考虑IGBT模块热耦合的简化多时间尺度热模型

Yi Zhang, Huai Wang, Zhongxu Wang, F. Blaabjerg
{"title":"考虑IGBT模块热耦合的简化多时间尺度热模型","authors":"Yi Zhang, Huai Wang, Zhongxu Wang, F. Blaabjerg","doi":"10.1109/APEC.2019.8721898","DOIUrl":null,"url":null,"abstract":"In the reliability evaluation of power electronic systems, one of the challenges is to model the thermal profiles across multiple time scales, i.e., from switching cycles at nano-or micro-seconds to annual or even longer-time mission profiles. Without consideration of the dissimilarity of thermal behaviors under different time scales, a single thermal model usually leads to either considerable modeling errors or heavy computational burden. Based on the frequency response of thermal impedances, this paper proposes a novel and simplified thermal model to analyze mission profiles with multiple time scales. It enables a computational-efficient thermal stress analysis for power semiconductors, including the thermal coupling in device packages. The theoretical results are verified by experimental testing.","PeriodicalId":142409,"journal":{"name":"2019 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Simplified Multi-time Scale Thermal Model Considering Thermal Coupling in IGBT Modules\",\"authors\":\"Yi Zhang, Huai Wang, Zhongxu Wang, F. Blaabjerg\",\"doi\":\"10.1109/APEC.2019.8721898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the reliability evaluation of power electronic systems, one of the challenges is to model the thermal profiles across multiple time scales, i.e., from switching cycles at nano-or micro-seconds to annual or even longer-time mission profiles. Without consideration of the dissimilarity of thermal behaviors under different time scales, a single thermal model usually leads to either considerable modeling errors or heavy computational burden. Based on the frequency response of thermal impedances, this paper proposes a novel and simplified thermal model to analyze mission profiles with multiple time scales. It enables a computational-efficient thermal stress analysis for power semiconductors, including the thermal coupling in device packages. The theoretical results are verified by experimental testing.\",\"PeriodicalId\":142409,\"journal\":{\"name\":\"2019 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC.2019.8721898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC.2019.8721898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

在电力电子系统的可靠性评估中,其中一个挑战是建立多个时间尺度的热分布模型,即从纳米或微秒的切换周期到每年甚至更长时间的任务分布。如果不考虑不同时间尺度下热行为的差异性,单一的热模型要么建模误差大,要么计算量大。基于热阻抗的频率响应,提出了一种新的简化热模型,用于多时间尺度任务剖面分析。它可以对功率半导体进行计算效率高的热应力分析,包括器件封装中的热耦合。通过实验验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simplified Multi-time Scale Thermal Model Considering Thermal Coupling in IGBT Modules
In the reliability evaluation of power electronic systems, one of the challenges is to model the thermal profiles across multiple time scales, i.e., from switching cycles at nano-or micro-seconds to annual or even longer-time mission profiles. Without consideration of the dissimilarity of thermal behaviors under different time scales, a single thermal model usually leads to either considerable modeling errors or heavy computational burden. Based on the frequency response of thermal impedances, this paper proposes a novel and simplified thermal model to analyze mission profiles with multiple time scales. It enables a computational-efficient thermal stress analysis for power semiconductors, including the thermal coupling in device packages. The theoretical results are verified by experimental testing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信