Yang Jiao, B. S. Schneider, E. Regentova, Mei Yang
{"title":"光学显微镜肌肉图像中白细胞的自动定量:由CNN增强的分割","authors":"Yang Jiao, B. S. Schneider, E. Regentova, Mei Yang","doi":"10.1145/3271553.3271570","DOIUrl":null,"url":null,"abstract":"White blood cells (WBCs) play an important role in the muscle recovery process. Detection and quantification of WBC expressions in light microscopy images captured at different time points after injury deliver valuable information about underlying processes. In this paper, an optimized CNN architecture is designed for classifying CD68 macrophages in 10x light microscopy images of injured muscle cross-sections. Based on the CNN classification results, hybrid masks are generated to post-process the segmentation results obtained by the LIOtsu thresholding method as a step towards extracting and quantifying CD68-positive macrophages. The segmentation is completed by the earlier designed LIOtsu thresholding method. The experimental results confirm that a high accuracy of classification is achieved by the proposed CNN architecture and high performance of quantification of CD68-positive macrophages is achieved by the LIOtsu thresholding method, augmented by CNN.","PeriodicalId":414782,"journal":{"name":"Proceedings of the 2nd International Conference on Vision, Image and Signal Processing","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automated Quantification of White Blood Cells in Light Microscopy Muscle Images: Segmentation Augmented by CNN\",\"authors\":\"Yang Jiao, B. S. Schneider, E. Regentova, Mei Yang\",\"doi\":\"10.1145/3271553.3271570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"White blood cells (WBCs) play an important role in the muscle recovery process. Detection and quantification of WBC expressions in light microscopy images captured at different time points after injury deliver valuable information about underlying processes. In this paper, an optimized CNN architecture is designed for classifying CD68 macrophages in 10x light microscopy images of injured muscle cross-sections. Based on the CNN classification results, hybrid masks are generated to post-process the segmentation results obtained by the LIOtsu thresholding method as a step towards extracting and quantifying CD68-positive macrophages. The segmentation is completed by the earlier designed LIOtsu thresholding method. The experimental results confirm that a high accuracy of classification is achieved by the proposed CNN architecture and high performance of quantification of CD68-positive macrophages is achieved by the LIOtsu thresholding method, augmented by CNN.\",\"PeriodicalId\":414782,\"journal\":{\"name\":\"Proceedings of the 2nd International Conference on Vision, Image and Signal Processing\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd International Conference on Vision, Image and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3271553.3271570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Vision, Image and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3271553.3271570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automated Quantification of White Blood Cells in Light Microscopy Muscle Images: Segmentation Augmented by CNN
White blood cells (WBCs) play an important role in the muscle recovery process. Detection and quantification of WBC expressions in light microscopy images captured at different time points after injury deliver valuable information about underlying processes. In this paper, an optimized CNN architecture is designed for classifying CD68 macrophages in 10x light microscopy images of injured muscle cross-sections. Based on the CNN classification results, hybrid masks are generated to post-process the segmentation results obtained by the LIOtsu thresholding method as a step towards extracting and quantifying CD68-positive macrophages. The segmentation is completed by the earlier designed LIOtsu thresholding method. The experimental results confirm that a high accuracy of classification is achieved by the proposed CNN architecture and high performance of quantification of CD68-positive macrophages is achieved by the LIOtsu thresholding method, augmented by CNN.