多通道自相关UWB接收机的非理想乘法器分析

Andreas Pedross-Engel, K. Witrisal
{"title":"多通道自相关UWB接收机的非理想乘法器分析","authors":"Andreas Pedross-Engel, K. Witrisal","doi":"10.1109/ICUWB.2012.6340408","DOIUrl":null,"url":null,"abstract":"Noncoherent UWB receivers promise low power consumption and low processing complexity but their peak data rate is limited by the delay spread of the multipath radio channel. A recently proposed multichannel autocorrelation receiver (AcR) can break this rate limit due to its multicarrier signal demodulation capability. In this paper, the hardware implementation of this receiver architecture is addressed. We focus on the multiplication device, which is a core part of the AcR and introduces strong interference due to nonlinear effects. To analyze the signal-to-interference ratio performance of the receiver system, a combined Wiener-Hammerstein system model of the multiplication device is introduced. It is shown that the receiver performance strongly depends on the input power of the nonideal multiplier devices.","PeriodicalId":260071,"journal":{"name":"2012 IEEE International Conference on Ultra-Wideband","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analysis of nonideal multipliers for multichannel autocorrelation UWB receivers\",\"authors\":\"Andreas Pedross-Engel, K. Witrisal\",\"doi\":\"10.1109/ICUWB.2012.6340408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Noncoherent UWB receivers promise low power consumption and low processing complexity but their peak data rate is limited by the delay spread of the multipath radio channel. A recently proposed multichannel autocorrelation receiver (AcR) can break this rate limit due to its multicarrier signal demodulation capability. In this paper, the hardware implementation of this receiver architecture is addressed. We focus on the multiplication device, which is a core part of the AcR and introduces strong interference due to nonlinear effects. To analyze the signal-to-interference ratio performance of the receiver system, a combined Wiener-Hammerstein system model of the multiplication device is introduced. It is shown that the receiver performance strongly depends on the input power of the nonideal multiplier devices.\",\"PeriodicalId\":260071,\"journal\":{\"name\":\"2012 IEEE International Conference on Ultra-Wideband\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Ultra-Wideband\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUWB.2012.6340408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Ultra-Wideband","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUWB.2012.6340408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

非相干超宽带接收机具有低功耗和低处理复杂度的优点,但其峰值数据速率受到多径无线电信道延迟扩展的限制。最近提出的一种多通道自相关接收机(AcR)由于具有多载波信号解调能力,可以突破这一速率限制。本文讨论了该接收机体系结构的硬件实现。我们重点研究了作为AcR核心部分的倍增器件,它由于非线性效应而引入了强干扰。为了分析接收系统的信干扰比性能,介绍了倍增装置的维纳-哈默斯坦组合系统模型。结果表明,接收机的性能很大程度上取决于非理想乘法器的输入功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of nonideal multipliers for multichannel autocorrelation UWB receivers
Noncoherent UWB receivers promise low power consumption and low processing complexity but their peak data rate is limited by the delay spread of the multipath radio channel. A recently proposed multichannel autocorrelation receiver (AcR) can break this rate limit due to its multicarrier signal demodulation capability. In this paper, the hardware implementation of this receiver architecture is addressed. We focus on the multiplication device, which is a core part of the AcR and introduces strong interference due to nonlinear effects. To analyze the signal-to-interference ratio performance of the receiver system, a combined Wiener-Hammerstein system model of the multiplication device is introduced. It is shown that the receiver performance strongly depends on the input power of the nonideal multiplier devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信