基于密度的优势集生长与聚类

Jian Hou, E. Xu, Hongxia Cui
{"title":"基于密度的优势集生长与聚类","authors":"Jian Hou, E. Xu, Hongxia Cui","doi":"10.1109/EMS.2016.020","DOIUrl":null,"url":null,"abstract":"Data clustering is an important technique in data mining and pattern recognition. In practical tasks the clusters can be of arbitrary shapes. However, many existing algorithms tend to generate only spherical clusters. While density based clustering algorithms are able to deal with arbitrary clusters, they usually involve multiple user-specified parameters. In this paper we propose to solve this problem by making use of the nice properties of dominant set algorithm. Specifically, we use the dominant sets algorithm with histogram equalization transformation to generate initial clusters. These initial clusters are usually subsets of real clusters. Then we expand the initial clusters to final ones with density information captured in the initial clusters. We experiment with clusters of various types and compare with other clustering algorithms to demonstrate the effectiveness of the proposed algorithm","PeriodicalId":446936,"journal":{"name":"2016 European Modelling Symposium (EMS)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Density Based Dominant Sets Growing and Clustering\",\"authors\":\"Jian Hou, E. Xu, Hongxia Cui\",\"doi\":\"10.1109/EMS.2016.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data clustering is an important technique in data mining and pattern recognition. In practical tasks the clusters can be of arbitrary shapes. However, many existing algorithms tend to generate only spherical clusters. While density based clustering algorithms are able to deal with arbitrary clusters, they usually involve multiple user-specified parameters. In this paper we propose to solve this problem by making use of the nice properties of dominant set algorithm. Specifically, we use the dominant sets algorithm with histogram equalization transformation to generate initial clusters. These initial clusters are usually subsets of real clusters. Then we expand the initial clusters to final ones with density information captured in the initial clusters. We experiment with clusters of various types and compare with other clustering algorithms to demonstrate the effectiveness of the proposed algorithm\",\"PeriodicalId\":446936,\"journal\":{\"name\":\"2016 European Modelling Symposium (EMS)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 European Modelling Symposium (EMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMS.2016.020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 European Modelling Symposium (EMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMS.2016.020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

数据聚类是数据挖掘和模式识别中的一项重要技术。在实际任务中,集群可以是任意形状的。然而,许多现有的算法倾向于只生成球形聚类。虽然基于密度的聚类算法能够处理任意的聚类,但它们通常涉及多个用户指定的参数。本文提出利用优势集算法的优良性质来解决这一问题。具体来说,我们使用直方图均衡化变换的优势集算法来生成初始聚类。这些初始集群通常是真实集群的子集。然后利用在初始聚类中捕获的密度信息将初始聚类扩展为最终聚类。我们对不同类型的聚类进行了实验,并与其他聚类算法进行了比较,以证明所提出算法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Density Based Dominant Sets Growing and Clustering
Data clustering is an important technique in data mining and pattern recognition. In practical tasks the clusters can be of arbitrary shapes. However, many existing algorithms tend to generate only spherical clusters. While density based clustering algorithms are able to deal with arbitrary clusters, they usually involve multiple user-specified parameters. In this paper we propose to solve this problem by making use of the nice properties of dominant set algorithm. Specifically, we use the dominant sets algorithm with histogram equalization transformation to generate initial clusters. These initial clusters are usually subsets of real clusters. Then we expand the initial clusters to final ones with density information captured in the initial clusters. We experiment with clusters of various types and compare with other clustering algorithms to demonstrate the effectiveness of the proposed algorithm
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信