癫痫患者99mTc-ECD弥散的数学模型

Panittavee Yarnvitayalert, T. Saleewong, Kitiwat Khamwan, S. Bongsebandhu-Phubhakdi
{"title":"癫痫患者99mTc-ECD弥散的数学模型","authors":"Panittavee Yarnvitayalert, T. Saleewong, Kitiwat Khamwan, S. Bongsebandhu-Phubhakdi","doi":"10.1109/ICESI.2019.8863025","DOIUrl":null,"url":null,"abstract":"This research develops diffusion equation to describe behavior of the <tex>$^{99\\mathrm{m}}\\text{Tc-ECD}$</tex> diffusion in epileptic patient's brain SPECT image over time. The equation was approximated the numerical solution at steady state by central difference approximation. Then they were compared with the real data around interested point that may be epileptogenic by relative error. In the result, the rate constant of <tex>$^{99\\mathrm{m}}\\text{Tc-ECD}$</tex> diffusion in brain area <tex>$D_{1}= 1. 10657$</tex> unit<sup>2</sup>/min and the rate constant of <tex>$^{99\\mathrm{m}}\\text{Tc-ECD}$</tex> diffusion in ventricle area <tex>$D_{2}=1$</tex> unit<sup>2</sup>/min that has relative error around 26.81%. The numerical solution show the <tex>$^{99\\mathrm{m}}\\text{Tc-ECD}$</tex> diffusion in brain SPECT image is homogeneous diffusion.","PeriodicalId":249316,"journal":{"name":"2019 International Conference on Engineering, Science, and Industrial Applications (ICESI)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Mathematical Model of 99mTc-ECD Diffusion in Brain for Epileptic Patients\",\"authors\":\"Panittavee Yarnvitayalert, T. Saleewong, Kitiwat Khamwan, S. Bongsebandhu-Phubhakdi\",\"doi\":\"10.1109/ICESI.2019.8863025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research develops diffusion equation to describe behavior of the <tex>$^{99\\\\mathrm{m}}\\\\text{Tc-ECD}$</tex> diffusion in epileptic patient's brain SPECT image over time. The equation was approximated the numerical solution at steady state by central difference approximation. Then they were compared with the real data around interested point that may be epileptogenic by relative error. In the result, the rate constant of <tex>$^{99\\\\mathrm{m}}\\\\text{Tc-ECD}$</tex> diffusion in brain area <tex>$D_{1}= 1. 10657$</tex> unit<sup>2</sup>/min and the rate constant of <tex>$^{99\\\\mathrm{m}}\\\\text{Tc-ECD}$</tex> diffusion in ventricle area <tex>$D_{2}=1$</tex> unit<sup>2</sup>/min that has relative error around 26.81%. The numerical solution show the <tex>$^{99\\\\mathrm{m}}\\\\text{Tc-ECD}$</tex> diffusion in brain SPECT image is homogeneous diffusion.\",\"PeriodicalId\":249316,\"journal\":{\"name\":\"2019 International Conference on Engineering, Science, and Industrial Applications (ICESI)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Engineering, Science, and Industrial Applications (ICESI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICESI.2019.8863025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Engineering, Science, and Industrial Applications (ICESI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICESI.2019.8863025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究建立扩散方程来描述癫痫患者脑SPECT图像中$^{99\math {m}}\text{Tc-ECD}$随时间的扩散行为。用中心差分近似法逼近稳态下的数值解。然后通过相对误差与可能致痫的感兴趣点周围的真实数据进行比较。结果表明,$^{99\ mathm {m}}\text{Tc-ECD}$脑区扩散速率常数$D_{1}= 1。计算的速率常数为$^{99\ mathm {m}}\text{Tc-ECD}$脑室区扩散$D_{2}=1$ unit2/min,相对误差在26.81%左右。数值解表明$^{99\ mathm {m}}\text{Tc-ECD}$在脑SPECT图像中的扩散是均匀扩散。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Mathematical Model of 99mTc-ECD Diffusion in Brain for Epileptic Patients
This research develops diffusion equation to describe behavior of the $^{99\mathrm{m}}\text{Tc-ECD}$ diffusion in epileptic patient's brain SPECT image over time. The equation was approximated the numerical solution at steady state by central difference approximation. Then they were compared with the real data around interested point that may be epileptogenic by relative error. In the result, the rate constant of $^{99\mathrm{m}}\text{Tc-ECD}$ diffusion in brain area $D_{1}= 1. 10657$ unit2/min and the rate constant of $^{99\mathrm{m}}\text{Tc-ECD}$ diffusion in ventricle area $D_{2}=1$ unit2/min that has relative error around 26.81%. The numerical solution show the $^{99\mathrm{m}}\text{Tc-ECD}$ diffusion in brain SPECT image is homogeneous diffusion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信