使用磁共振成像文本记录预测脑卒中预后的各种方法

Tak-Sung Heo, Chulho Kim, J. Choi, Y. Jeong, Yu-Seop Kim
{"title":"使用磁共振成像文本记录预测脑卒中预后的各种方法","authors":"Tak-Sung Heo, Chulho Kim, J. Choi, Y. Jeong, Yu-Seop Kim","doi":"10.18653/v1/2020.clinicalnlp-1.1","DOIUrl":null,"url":null,"abstract":"Stroke is one of the leading causes of death and disability worldwide. Stroke is treatable, but it is prone to disability after treatment and must be prevented. To grasp the degree of disability caused by stroke, we use magnetic resonance imaging text records to predict stroke and measure the performance according to the document-level and sentence-level representation. As a result of the experiment, the document-level representation shows better performance.","PeriodicalId":216954,"journal":{"name":"Clinical Natural Language Processing Workshop","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Various Approaches for Predicting Stroke Prognosis using Magnetic Resonance Imaging Text Records\",\"authors\":\"Tak-Sung Heo, Chulho Kim, J. Choi, Y. Jeong, Yu-Seop Kim\",\"doi\":\"10.18653/v1/2020.clinicalnlp-1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stroke is one of the leading causes of death and disability worldwide. Stroke is treatable, but it is prone to disability after treatment and must be prevented. To grasp the degree of disability caused by stroke, we use magnetic resonance imaging text records to predict stroke and measure the performance according to the document-level and sentence-level representation. As a result of the experiment, the document-level representation shows better performance.\",\"PeriodicalId\":216954,\"journal\":{\"name\":\"Clinical Natural Language Processing Workshop\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Natural Language Processing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2020.clinicalnlp-1.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Natural Language Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.clinicalnlp-1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

中风是全世界导致死亡和残疾的主要原因之一。中风是可以治疗的,但治疗后容易致残,必须预防。为了掌握脑卒中导致的残疾程度,我们使用磁共振成像文本记录来预测脑卒中,并根据文档级和句子级表示来衡量表现。实验结果表明,文档级表示具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Various Approaches for Predicting Stroke Prognosis using Magnetic Resonance Imaging Text Records
Stroke is one of the leading causes of death and disability worldwide. Stroke is treatable, but it is prone to disability after treatment and must be prevented. To grasp the degree of disability caused by stroke, we use magnetic resonance imaging text records to predict stroke and measure the performance according to the document-level and sentence-level representation. As a result of the experiment, the document-level representation shows better performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信