基于多组公平的强化学习预测学生代数I成绩

Fan Zhang, Wanli Xing, Chenglu Li
{"title":"基于多组公平的强化学习预测学生代数I成绩","authors":"Fan Zhang, Wanli Xing, Chenglu Li","doi":"10.1145/3576050.3576104","DOIUrl":null,"url":null,"abstract":"Numerous studies have successfully adopted learning analytics techniques such as machine learning (ML) to address educational issues. However, limited research has addressed the problem of algorithmic bias in ML. In the few attempts to develop strategies to concretely mitigate algorithmic bias in education, the focus has been on debiasing ML models with single group membership. This study aimed to propose an algorithmic strategy to mitigate bias in a multi-group context. The results showed that our proposed model could effectively reduce algorithmic bias in a multi-group setting while retaining competitive accuracy. The findings implied that there could be a paradigm shift from focusing on debiasing a single group to multiple groups in educational attempts on ML.","PeriodicalId":394433,"journal":{"name":"LAK23: 13th International Learning Analytics and Knowledge Conference","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Students’ Algebra I Performance using Reinforcement Learning with Multi-Group Fairness\",\"authors\":\"Fan Zhang, Wanli Xing, Chenglu Li\",\"doi\":\"10.1145/3576050.3576104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerous studies have successfully adopted learning analytics techniques such as machine learning (ML) to address educational issues. However, limited research has addressed the problem of algorithmic bias in ML. In the few attempts to develop strategies to concretely mitigate algorithmic bias in education, the focus has been on debiasing ML models with single group membership. This study aimed to propose an algorithmic strategy to mitigate bias in a multi-group context. The results showed that our proposed model could effectively reduce algorithmic bias in a multi-group setting while retaining competitive accuracy. The findings implied that there could be a paradigm shift from focusing on debiasing a single group to multiple groups in educational attempts on ML.\",\"PeriodicalId\":394433,\"journal\":{\"name\":\"LAK23: 13th International Learning Analytics and Knowledge Conference\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"LAK23: 13th International Learning Analytics and Knowledge Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3576050.3576104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"LAK23: 13th International Learning Analytics and Knowledge Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3576050.3576104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多研究已经成功地采用了学习分析技术,如机器学习(ML)来解决教育问题。然而,有限的研究已经解决了机器学习中的算法偏见问题。在少数尝试制定具体减轻教育中的算法偏见的策略中,重点是消除具有单一组成员的机器学习模型的偏见。本研究旨在提出一种算法策略,以减轻多群体背景下的偏见。结果表明,我们提出的模型可以有效地减少多组环境下的算法偏差,同时保持竞争精度。研究结果表明,在机器学习的教育尝试中,可能会有一个范式转变,从专注于消除单个群体的偏见到多个群体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Students’ Algebra I Performance using Reinforcement Learning with Multi-Group Fairness
Numerous studies have successfully adopted learning analytics techniques such as machine learning (ML) to address educational issues. However, limited research has addressed the problem of algorithmic bias in ML. In the few attempts to develop strategies to concretely mitigate algorithmic bias in education, the focus has been on debiasing ML models with single group membership. This study aimed to propose an algorithmic strategy to mitigate bias in a multi-group context. The results showed that our proposed model could effectively reduce algorithmic bias in a multi-group setting while retaining competitive accuracy. The findings implied that there could be a paradigm shift from focusing on debiasing a single group to multiple groups in educational attempts on ML.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信