GPU加速MapReduce的实现:使用Hadoop和OpenCL处理数据和计算密集型任务

Miao Xin, Hao Li
{"title":"GPU加速MapReduce的实现:使用Hadoop和OpenCL处理数据和计算密集型任务","authors":"Miao Xin, Hao Li","doi":"10.1109/IJCSS.2012.22","DOIUrl":null,"url":null,"abstract":"MapReduce is an efficient distributed computing model for large-scale data processing. However, single-node performance is gradually to be the bottleneck in compute-intensive jobs. This paper presents an approach of MapReduce improvement with GPU acceleration, which is implemented by Hadoop and OpenCL. Different from other implementations, it targets at general and inexpensive hardware platform, and it is seamless-integrated with Apache Hadoop, a most widely used MapReduce framework. As a heterogeneous multi-machine and multicore architecture, it aims at both data- and compute-intensive applications. An almost 2 times performance improvement has been validated, without any farther optimization.","PeriodicalId":147619,"journal":{"name":"2012 International Joint Conference on Service Sciences","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"An Implementation of GPU Accelerated MapReduce: Using Hadoop with OpenCL for Data- and Compute-Intensive Jobs\",\"authors\":\"Miao Xin, Hao Li\",\"doi\":\"10.1109/IJCSS.2012.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MapReduce is an efficient distributed computing model for large-scale data processing. However, single-node performance is gradually to be the bottleneck in compute-intensive jobs. This paper presents an approach of MapReduce improvement with GPU acceleration, which is implemented by Hadoop and OpenCL. Different from other implementations, it targets at general and inexpensive hardware platform, and it is seamless-integrated with Apache Hadoop, a most widely used MapReduce framework. As a heterogeneous multi-machine and multicore architecture, it aims at both data- and compute-intensive applications. An almost 2 times performance improvement has been validated, without any farther optimization.\",\"PeriodicalId\":147619,\"journal\":{\"name\":\"2012 International Joint Conference on Service Sciences\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Joint Conference on Service Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCSS.2012.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Joint Conference on Service Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCSS.2012.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

MapReduce是一种高效的大规模数据处理分布式计算模型。然而,单节点性能逐渐成为计算密集型作业的瓶颈。本文提出了一种基于GPU加速的MapReduce改进方法,该方法由Hadoop和OpenCL实现。与其他实现不同的是,它针对通用且廉价的硬件平台,并且与使用最广泛的MapReduce框架Apache Hadoop无缝集成。作为一种异构多机多核体系结构,它的目标是数据和计算密集型应用。在没有进一步优化的情况下,已经验证了几乎2倍的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Implementation of GPU Accelerated MapReduce: Using Hadoop with OpenCL for Data- and Compute-Intensive Jobs
MapReduce is an efficient distributed computing model for large-scale data processing. However, single-node performance is gradually to be the bottleneck in compute-intensive jobs. This paper presents an approach of MapReduce improvement with GPU acceleration, which is implemented by Hadoop and OpenCL. Different from other implementations, it targets at general and inexpensive hardware platform, and it is seamless-integrated with Apache Hadoop, a most widely used MapReduce framework. As a heterogeneous multi-machine and multicore architecture, it aims at both data- and compute-intensive applications. An almost 2 times performance improvement has been validated, without any farther optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信