情感分析方法在数字游戏中的应用比较

Gustavo Adão De Souza, Marcelo Dornbusch Lopes, A.M. da Rocha Fernandes, V. Leithardt, P. Crocker
{"title":"情感分析方法在数字游戏中的应用比较","authors":"Gustavo Adão De Souza, Marcelo Dornbusch Lopes, A.M. da Rocha Fernandes, V. Leithardt, P. Crocker","doi":"10.23919/CISTI58278.2023.10211536","DOIUrl":null,"url":null,"abstract":"This article presents an analysis of sentiment classification algorithms, based on texts in Portuguese (Pt-Br) extracted from Twitter and Steam platforms, to determine which are the best Analysis Sentiment algorithms to classify user feedback in digital game contexts. On the Twitter platform, the best algorithm was Stacking with Support Vector Machine meta- classifier reaching 81.5% Accuracy. On the Steam platform, the best algorithm was Stacking with Random Forest meta-classifier reaching 82.8% Accuracy. The results show that the performance of each algorithm tends to improve when using Steam data.","PeriodicalId":121747,"journal":{"name":"2023 18th Iberian Conference on Information Systems and Technologies (CISTI)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison Between Sentiment Analysis Approaches Applied to Digital Games\",\"authors\":\"Gustavo Adão De Souza, Marcelo Dornbusch Lopes, A.M. da Rocha Fernandes, V. Leithardt, P. Crocker\",\"doi\":\"10.23919/CISTI58278.2023.10211536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents an analysis of sentiment classification algorithms, based on texts in Portuguese (Pt-Br) extracted from Twitter and Steam platforms, to determine which are the best Analysis Sentiment algorithms to classify user feedback in digital game contexts. On the Twitter platform, the best algorithm was Stacking with Support Vector Machine meta- classifier reaching 81.5% Accuracy. On the Steam platform, the best algorithm was Stacking with Random Forest meta-classifier reaching 82.8% Accuracy. The results show that the performance of each algorithm tends to improve when using Steam data.\",\"PeriodicalId\":121747,\"journal\":{\"name\":\"2023 18th Iberian Conference on Information Systems and Technologies (CISTI)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 18th Iberian Conference on Information Systems and Technologies (CISTI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CISTI58278.2023.10211536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 18th Iberian Conference on Information Systems and Technologies (CISTI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CISTI58278.2023.10211536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文基于从Twitter和Steam平台提取的葡萄牙语文本(Pt-Br),分析了情感分类算法,以确定在数字游戏环境中哪种是对用户反馈进行分类的最佳情感分析算法。在Twitter平台上,最佳算法是支持向量机元分类器叠加,准确率达到81.5%。在Steam平台上,最佳算法是Stacking with Random Forest元分类器,准确率达到82.8%。结果表明,在使用Steam数据时,各算法的性能都有提高的趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison Between Sentiment Analysis Approaches Applied to Digital Games
This article presents an analysis of sentiment classification algorithms, based on texts in Portuguese (Pt-Br) extracted from Twitter and Steam platforms, to determine which are the best Analysis Sentiment algorithms to classify user feedback in digital game contexts. On the Twitter platform, the best algorithm was Stacking with Support Vector Machine meta- classifier reaching 81.5% Accuracy. On the Steam platform, the best algorithm was Stacking with Random Forest meta-classifier reaching 82.8% Accuracy. The results show that the performance of each algorithm tends to improve when using Steam data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信