SCNTA:使用机器学习方法监测网络可用性和异常识别活动

Romil Rawat, Bhagwati Garg, Kiran Pachlasiya, V. Mahor, Shrikant Telang, Mukesh Chouhan, Surendra Kumar Shukla, Rina Mishra
{"title":"SCNTA:使用机器学习方法监测网络可用性和异常识别活动","authors":"Romil Rawat, Bhagwati Garg, Kiran Pachlasiya, V. Mahor, Shrikant Telang, Mukesh Chouhan, Surendra Kumar Shukla, Rina Mishra","doi":"10.4018/ijitwe.297971","DOIUrl":null,"url":null,"abstract":"Real-time network inspection applications face a threat of vulnerability as high-speed networks continue to expand. For companies and ISPs, real-time traffic classification is an issue. The classifier monitor is made up of three modules: Capturing_of_Packets (CoP) and pre-processing, Reconciliation_of_Flow (RoF), and categorization of Machine Learning (ML). Based on parallel processing along with well-defined interfacing of data, the modules are framed, allowing each module to be modified and upgraded separately. The Reconciliation_of_Flow (RoF) mechanism becomes the output bottleneck in this pipeline. In this implementation, an optimal reconciliation process was used, resulting in an average delivery time of 0.62 seconds. In order to verify our method, we equated the results of the AdaBoost Ensemble Learning Algorithm (ABELA), Naive Bayes (NB), Decision Tree (DT), K-Nearest Neighbor (KNN), and Flexible Naive Bayes (FNB) in the classification module. The architectural design of the run time CSNTA categorization (flow-based) scheme is presented in this paper.","PeriodicalId":222340,"journal":{"name":"Int. J. Inf. Technol. Web Eng.","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"SCNTA: Monitoring of Network Availability and Activity for Identification of Anomalies Using Machine Learning Approaches\",\"authors\":\"Romil Rawat, Bhagwati Garg, Kiran Pachlasiya, V. Mahor, Shrikant Telang, Mukesh Chouhan, Surendra Kumar Shukla, Rina Mishra\",\"doi\":\"10.4018/ijitwe.297971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time network inspection applications face a threat of vulnerability as high-speed networks continue to expand. For companies and ISPs, real-time traffic classification is an issue. The classifier monitor is made up of three modules: Capturing_of_Packets (CoP) and pre-processing, Reconciliation_of_Flow (RoF), and categorization of Machine Learning (ML). Based on parallel processing along with well-defined interfacing of data, the modules are framed, allowing each module to be modified and upgraded separately. The Reconciliation_of_Flow (RoF) mechanism becomes the output bottleneck in this pipeline. In this implementation, an optimal reconciliation process was used, resulting in an average delivery time of 0.62 seconds. In order to verify our method, we equated the results of the AdaBoost Ensemble Learning Algorithm (ABELA), Naive Bayes (NB), Decision Tree (DT), K-Nearest Neighbor (KNN), and Flexible Naive Bayes (FNB) in the classification module. The architectural design of the run time CSNTA categorization (flow-based) scheme is presented in this paper.\",\"PeriodicalId\":222340,\"journal\":{\"name\":\"Int. J. Inf. Technol. Web Eng.\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Inf. Technol. Web Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijitwe.297971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Technol. Web Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijitwe.297971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着高速网络的不断扩展,实时网络检测应用面临着漏洞的威胁。对于公司和互联网服务提供商来说,实时流量分类是一个问题。分类器监视器由三个模块组成:Capturing_of_Packets (CoP)和预处理、Reconciliation_of_Flow (RoF)和classification of Machine Learning (ML)。基于并行处理和良好定义的数据接口,模块被框架化,允许每个模块单独修改和升级。Reconciliation_of_Flow (RoF)机制成为该管道中的输出瓶颈。在此实现中,使用了最优的对账流程,平均交付时间为0.62秒。为了验证我们的方法,我们将AdaBoost集成学习算法(ABELA)、朴素贝叶斯(NB)、决策树(DT)、k近邻(KNN)和灵活朴素贝叶斯(FNB)在分类模块中的结果等同起来。本文给出了运行时CSNTA分类(基于流)方案的体系结构设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SCNTA: Monitoring of Network Availability and Activity for Identification of Anomalies Using Machine Learning Approaches
Real-time network inspection applications face a threat of vulnerability as high-speed networks continue to expand. For companies and ISPs, real-time traffic classification is an issue. The classifier monitor is made up of three modules: Capturing_of_Packets (CoP) and pre-processing, Reconciliation_of_Flow (RoF), and categorization of Machine Learning (ML). Based on parallel processing along with well-defined interfacing of data, the modules are framed, allowing each module to be modified and upgraded separately. The Reconciliation_of_Flow (RoF) mechanism becomes the output bottleneck in this pipeline. In this implementation, an optimal reconciliation process was used, resulting in an average delivery time of 0.62 seconds. In order to verify our method, we equated the results of the AdaBoost Ensemble Learning Algorithm (ABELA), Naive Bayes (NB), Decision Tree (DT), K-Nearest Neighbor (KNN), and Flexible Naive Bayes (FNB) in the classification module. The architectural design of the run time CSNTA categorization (flow-based) scheme is presented in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信