{"title":"用SiPM阵列和LYSO晶体矩阵进行了仿真研究,分析了一种新的读出方案","authors":"A. Krizsan, S. Kis, J. Gál, G. Hegyesi, L. Balkay","doi":"10.1109/NSSMIC.2012.6551608","DOIUrl":null,"url":null,"abstract":"The concept of implementing Positron Emission Tomography and Magnetic Resonance Imaging in a dual modality imaging system gained high scientific importance recently. SiPM photo detectors became a solution for operation in high magnetic fields instead of the conventional photomultipliers. The method of Anger logics in the SiPM readout of pixelated scintillator crystals would produce significant noise in the readout signals, while single channel readout for each crystal pixel would not be cost effective. Another solution could be defined if we sum the SiPM signals for each row and column and an appropriate algorithm may select the X and Y coordinates of the original position of the scintillation source. It is expected that the highest signal related row and column would indicate correct position. The scope of this work was to calculate the optimal light distribution for different SiPM and scintillator matrix geometries, that would result in the greatest signal difference between the primary and adjacent readout channels and therefore would perform the best reliable selection of the relevant row and column indices.","PeriodicalId":187728,"journal":{"name":"2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Simulation studies with SiPM arrays and LYSO crystal matrix analyzing a new readout scheme\",\"authors\":\"A. Krizsan, S. Kis, J. Gál, G. Hegyesi, L. Balkay\",\"doi\":\"10.1109/NSSMIC.2012.6551608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concept of implementing Positron Emission Tomography and Magnetic Resonance Imaging in a dual modality imaging system gained high scientific importance recently. SiPM photo detectors became a solution for operation in high magnetic fields instead of the conventional photomultipliers. The method of Anger logics in the SiPM readout of pixelated scintillator crystals would produce significant noise in the readout signals, while single channel readout for each crystal pixel would not be cost effective. Another solution could be defined if we sum the SiPM signals for each row and column and an appropriate algorithm may select the X and Y coordinates of the original position of the scintillation source. It is expected that the highest signal related row and column would indicate correct position. The scope of this work was to calculate the optimal light distribution for different SiPM and scintillator matrix geometries, that would result in the greatest signal difference between the primary and adjacent readout channels and therefore would perform the best reliable selection of the relevant row and column indices.\",\"PeriodicalId\":187728,\"journal\":{\"name\":\"2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2012.6551608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2012.6551608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation studies with SiPM arrays and LYSO crystal matrix analyzing a new readout scheme
The concept of implementing Positron Emission Tomography and Magnetic Resonance Imaging in a dual modality imaging system gained high scientific importance recently. SiPM photo detectors became a solution for operation in high magnetic fields instead of the conventional photomultipliers. The method of Anger logics in the SiPM readout of pixelated scintillator crystals would produce significant noise in the readout signals, while single channel readout for each crystal pixel would not be cost effective. Another solution could be defined if we sum the SiPM signals for each row and column and an appropriate algorithm may select the X and Y coordinates of the original position of the scintillation source. It is expected that the highest signal related row and column would indicate correct position. The scope of this work was to calculate the optimal light distribution for different SiPM and scintillator matrix geometries, that would result in the greatest signal difference between the primary and adjacent readout channels and therefore would perform the best reliable selection of the relevant row and column indices.