行人分类的特征变换优化

Yuuki Nakashima, J. Tan
{"title":"行人分类的特征变换优化","authors":"Yuuki Nakashima, J. Tan","doi":"10.23919/SICE.2018.8492633","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a FTOP (Feature Transform Optimization Problem) and its solution. We propose a method to optimize both parameters and processing order of feature transform simultaneously, not limited to convolution and pooling included in CNN (Convolutional Neural Network). In order to realize the optimization, we formulate it as a combinatorial optimization problem and solve it by meta-heuristics. The effectiveness of the proposed method is shown by applying the proposed method to pedestrian classification based on a benchmark data set.","PeriodicalId":425164,"journal":{"name":"2018 57th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE)","volume":"362 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature Transform Optimization for Pedestrian Classification\",\"authors\":\"Yuuki Nakashima, J. Tan\",\"doi\":\"10.23919/SICE.2018.8492633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a FTOP (Feature Transform Optimization Problem) and its solution. We propose a method to optimize both parameters and processing order of feature transform simultaneously, not limited to convolution and pooling included in CNN (Convolutional Neural Network). In order to realize the optimization, we formulate it as a combinatorial optimization problem and solve it by meta-heuristics. The effectiveness of the proposed method is shown by applying the proposed method to pedestrian classification based on a benchmark data set.\",\"PeriodicalId\":425164,\"journal\":{\"name\":\"2018 57th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE)\",\"volume\":\"362 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 57th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/SICE.2018.8492633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 57th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SICE.2018.8492633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个特征变换优化问题(FTOP)及其求解方法。我们提出了一种同时优化参数和特征变换处理顺序的方法,不局限于卷积神经网络(CNN)中的卷积和池化。为了实现优化,我们将其表述为一个组合优化问题,并采用元启发式方法进行求解。将该方法应用于基于基准数据集的行人分类,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature Transform Optimization for Pedestrian Classification
In this paper, we propose a FTOP (Feature Transform Optimization Problem) and its solution. We propose a method to optimize both parameters and processing order of feature transform simultaneously, not limited to convolution and pooling included in CNN (Convolutional Neural Network). In order to realize the optimization, we formulate it as a combinatorial optimization problem and solve it by meta-heuristics. The effectiveness of the proposed method is shown by applying the proposed method to pedestrian classification based on a benchmark data set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信