新型叶片喷嘴旋转气体高压SF6断路器的研究第三部分:电弧行为研究

Yundong Cao, Shu Wang, Jing Li, Zhiming Qi
{"title":"新型叶片喷嘴旋转气体高压SF6断路器的研究第三部分:电弧行为研究","authors":"Yundong Cao, Shu Wang, Jing Li, Zhiming Qi","doi":"10.1109/ICEPE-ST.2011.6122953","DOIUrl":null,"url":null,"abstract":"A 252kV single-break SF6 circuit breaker is taken as the investigation model in this paper and 3D numerical calculation model of traditional no-blade nozzle and novel blade nozzle are presented based on 3D N-S equations. By simulating, influences of gas flow on arc during the arc extinguishing process of the two type nozzles have been researched using finite volume method (FVM). Arc extinction performance has been judged by comparison temperature, pressure and velocity vector of blade nozzle under different opening load. And the variation regular of energy is acquired by analyzing the maximum sections energy. Research indicates that blade nozzle can control gas flow movement effectively, accelerate arc energy dissipation, and benefit for the interruption of circuit breaker.","PeriodicalId":379448,"journal":{"name":"2011 1st International Conference on Electric Power Equipment - Switching Technology","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on rotary-gas high voltage SF6 circuit breaker with novel blade nozzle Part III: Arc behavior research\",\"authors\":\"Yundong Cao, Shu Wang, Jing Li, Zhiming Qi\",\"doi\":\"10.1109/ICEPE-ST.2011.6122953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A 252kV single-break SF6 circuit breaker is taken as the investigation model in this paper and 3D numerical calculation model of traditional no-blade nozzle and novel blade nozzle are presented based on 3D N-S equations. By simulating, influences of gas flow on arc during the arc extinguishing process of the two type nozzles have been researched using finite volume method (FVM). Arc extinction performance has been judged by comparison temperature, pressure and velocity vector of blade nozzle under different opening load. And the variation regular of energy is acquired by analyzing the maximum sections energy. Research indicates that blade nozzle can control gas flow movement effectively, accelerate arc energy dissipation, and benefit for the interruption of circuit breaker.\",\"PeriodicalId\":379448,\"journal\":{\"name\":\"2011 1st International Conference on Electric Power Equipment - Switching Technology\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 1st International Conference on Electric Power Equipment - Switching Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEPE-ST.2011.6122953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 1st International Conference on Electric Power Equipment - Switching Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEPE-ST.2011.6122953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文以252kV单开SF6断路器为研究对象,建立了基于三维N-S方程的传统无叶片喷管和新型叶片喷管的三维数值计算模型。通过模拟,采用有限体积法研究了两种喷嘴灭弧过程中气体流量对电弧的影响。通过对比不同开度载荷下叶片喷嘴的温度、压力和速度矢量来判断消弧性能。通过对最大截面能量的分析,得出了能量的变化规律。研究表明,叶片喷嘴能有效地控制气流运动,加速电弧能量耗散,有利于断路器的中断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on rotary-gas high voltage SF6 circuit breaker with novel blade nozzle Part III: Arc behavior research
A 252kV single-break SF6 circuit breaker is taken as the investigation model in this paper and 3D numerical calculation model of traditional no-blade nozzle and novel blade nozzle are presented based on 3D N-S equations. By simulating, influences of gas flow on arc during the arc extinguishing process of the two type nozzles have been researched using finite volume method (FVM). Arc extinction performance has been judged by comparison temperature, pressure and velocity vector of blade nozzle under different opening load. And the variation regular of energy is acquired by analyzing the maximum sections energy. Research indicates that blade nozzle can control gas flow movement effectively, accelerate arc energy dissipation, and benefit for the interruption of circuit breaker.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信