基于多传感器的廊道环境SLAM研究

Fei Wang, H. Shao, Q. Zhao, Zhiquan Feng
{"title":"基于多传感器的廊道环境SLAM研究","authors":"Fei Wang, H. Shao, Q. Zhao, Zhiquan Feng","doi":"10.1109/RCAR52367.2021.9517540","DOIUrl":null,"url":null,"abstract":"In view of the problems of large positioning deviation and map offset in the use of laser and vision sensors to construct maps in the corridor environment, the current stage of multi-sensor fusion SLAM algorithm is researched. Improving a SLAM algorithm based on weighted observation fusion EKF, fusing lidar, depth camera and IMU sensor information, and adding a closed-loop detection verification mechanism at the back of the SLAM algorithm. In order to verify the effectiveness of the algorithm, 16 feature points are selected to perform error analysis. The average map update time is reduced by 0.29s, the average relative error is reduced by 1.277%, and the maximum relative error is reduced from 3.130% to 0.673%.","PeriodicalId":232892,"journal":{"name":"2021 IEEE International Conference on Real-time Computing and Robotics (RCAR)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on SLAM of Corridor Environment Based on Multi-Sensor\",\"authors\":\"Fei Wang, H. Shao, Q. Zhao, Zhiquan Feng\",\"doi\":\"10.1109/RCAR52367.2021.9517540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In view of the problems of large positioning deviation and map offset in the use of laser and vision sensors to construct maps in the corridor environment, the current stage of multi-sensor fusion SLAM algorithm is researched. Improving a SLAM algorithm based on weighted observation fusion EKF, fusing lidar, depth camera and IMU sensor information, and adding a closed-loop detection verification mechanism at the back of the SLAM algorithm. In order to verify the effectiveness of the algorithm, 16 feature points are selected to perform error analysis. The average map update time is reduced by 0.29s, the average relative error is reduced by 1.277%, and the maximum relative error is reduced from 3.130% to 0.673%.\",\"PeriodicalId\":232892,\"journal\":{\"name\":\"2021 IEEE International Conference on Real-time Computing and Robotics (RCAR)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Real-time Computing and Robotics (RCAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RCAR52367.2021.9517540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Real-time Computing and Robotics (RCAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RCAR52367.2021.9517540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对走廊环境下使用激光和视觉传感器构建地图存在较大的定位偏差和地图偏移等问题,研究了现阶段多传感器融合SLAM算法。改进了一种基于加权观测融合EKF的SLAM算法,融合了激光雷达、深度相机和IMU传感器信息,并在SLAM算法后面增加了闭环检测验证机制。为了验证算法的有效性,选取16个特征点进行误差分析。平均地图更新时间减少0.29s,平均相对误差减少1.277%,最大相对误差从3.130%减少到0.673%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on SLAM of Corridor Environment Based on Multi-Sensor
In view of the problems of large positioning deviation and map offset in the use of laser and vision sensors to construct maps in the corridor environment, the current stage of multi-sensor fusion SLAM algorithm is researched. Improving a SLAM algorithm based on weighted observation fusion EKF, fusing lidar, depth camera and IMU sensor information, and adding a closed-loop detection verification mechanism at the back of the SLAM algorithm. In order to verify the effectiveness of the algorithm, 16 feature points are selected to perform error analysis. The average map update time is reduced by 0.29s, the average relative error is reduced by 1.277%, and the maximum relative error is reduced from 3.130% to 0.673%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信