利用曲率尺度空间(CSS)技术和旋转下的自组织映射(SOM)模型进行图像检索

C. Almeida, R. Souza, C. Rodrigues, N. L. C. Junior
{"title":"利用曲率尺度空间(CSS)技术和旋转下的自组织映射(SOM)模型进行图像检索","authors":"C. Almeida, R. Souza, C. Rodrigues, N. L. C. Junior","doi":"10.1109/ICDIM.2007.4444249","DOIUrl":null,"url":null,"abstract":"In a previous work (de Almeida), we presented an approach for shape-based image retrieval using the curvature scale space (CSS) and self-organizing map (SOM) methods. Here, we examine the robustness of the representation with images under variations of rotation. Moreover, the CSS images extracted from a database are processed and represented by median vectors that constitutes the training data set for a SOM neural network. This way of representation improves the accuracy of image retrieval in comparison with the previous work (de Almeida) that used the first principal component of the PCA technique. A benchmark database is used to demonstrate the usefulness of the proposed methodology.","PeriodicalId":198626,"journal":{"name":"2007 2nd International Conference on Digital Information Management","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Image retrieval using the curvature scale space (CSS) technique and the self-organizing map (SOM) model under rotation\",\"authors\":\"C. Almeida, R. Souza, C. Rodrigues, N. L. C. Junior\",\"doi\":\"10.1109/ICDIM.2007.4444249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a previous work (de Almeida), we presented an approach for shape-based image retrieval using the curvature scale space (CSS) and self-organizing map (SOM) methods. Here, we examine the robustness of the representation with images under variations of rotation. Moreover, the CSS images extracted from a database are processed and represented by median vectors that constitutes the training data set for a SOM neural network. This way of representation improves the accuracy of image retrieval in comparison with the previous work (de Almeida) that used the first principal component of the PCA technique. A benchmark database is used to demonstrate the usefulness of the proposed methodology.\",\"PeriodicalId\":198626,\"journal\":{\"name\":\"2007 2nd International Conference on Digital Information Management\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 2nd International Conference on Digital Information Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDIM.2007.4444249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd International Conference on Digital Information Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDIM.2007.4444249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在之前的工作(de Almeida)中,我们提出了一种使用曲率尺度空间(CSS)和自组织映射(SOM)方法的基于形状的图像检索方法。在这里,我们研究了旋转变化下图像表示的鲁棒性。此外,从数据库中提取的CSS图像被处理并用中值向量表示,这些中值向量构成了SOM神经网络的训练数据集。与先前使用主成分分析技术的第一主成分的工作(de Almeida)相比,这种表示方式提高了图像检索的准确性。使用基准数据库来演示所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image retrieval using the curvature scale space (CSS) technique and the self-organizing map (SOM) model under rotation
In a previous work (de Almeida), we presented an approach for shape-based image retrieval using the curvature scale space (CSS) and self-organizing map (SOM) methods. Here, we examine the robustness of the representation with images under variations of rotation. Moreover, the CSS images extracted from a database are processed and represented by median vectors that constitutes the training data set for a SOM neural network. This way of representation improves the accuracy of image retrieval in comparison with the previous work (de Almeida) that used the first principal component of the PCA technique. A benchmark database is used to demonstrate the usefulness of the proposed methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信