L. Que, C. Wilson, J.-A.E. de La Rode, Y. Gianchandani
{"title":"水光谱微系统集成放电源,色散光学,和样品输送","authors":"L. Que, C. Wilson, J.-A.E. de La Rode, Y. Gianchandani","doi":"10.1109/SENSOR.2003.1215246","DOIUrl":null,"url":null,"abstract":"This paper reports a microsystem integrating the fluidic, electrical and optical elements required for field-portable water-chemistry testing by electric discharge spectroscopy. The device utilizes a DC microdischarge as a spectroscopic source. The discharge is created by applying a DC voltage between a metal anode and uses the water sample as the cathode. Impurities are sputtered from the water sample into the microdischarge. A blazed grating is used as the dispersion element, along with an aperture fabricated on a glass substrate. The microsystem is assembled and used with a CCD sensing element to distinguish atomic spectra. Two versions of the microsystem have been implemented: planar and a capillary tube-based device. Detection of Cr and other chemicals in water samples has been successfully demonstrated with both devices.","PeriodicalId":196104,"journal":{"name":"TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A water spectroscopy microsystem with integrated discharge source, dispersion optics, and sample delivery\",\"authors\":\"L. Que, C. Wilson, J.-A.E. de La Rode, Y. Gianchandani\",\"doi\":\"10.1109/SENSOR.2003.1215246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports a microsystem integrating the fluidic, electrical and optical elements required for field-portable water-chemistry testing by electric discharge spectroscopy. The device utilizes a DC microdischarge as a spectroscopic source. The discharge is created by applying a DC voltage between a metal anode and uses the water sample as the cathode. Impurities are sputtered from the water sample into the microdischarge. A blazed grating is used as the dispersion element, along with an aperture fabricated on a glass substrate. The microsystem is assembled and used with a CCD sensing element to distinguish atomic spectra. Two versions of the microsystem have been implemented: planar and a capillary tube-based device. Detection of Cr and other chemicals in water samples has been successfully demonstrated with both devices.\",\"PeriodicalId\":196104,\"journal\":{\"name\":\"TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSOR.2003.1215246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSOR.2003.1215246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A water spectroscopy microsystem with integrated discharge source, dispersion optics, and sample delivery
This paper reports a microsystem integrating the fluidic, electrical and optical elements required for field-portable water-chemistry testing by electric discharge spectroscopy. The device utilizes a DC microdischarge as a spectroscopic source. The discharge is created by applying a DC voltage between a metal anode and uses the water sample as the cathode. Impurities are sputtered from the water sample into the microdischarge. A blazed grating is used as the dispersion element, along with an aperture fabricated on a glass substrate. The microsystem is assembled and used with a CCD sensing element to distinguish atomic spectra. Two versions of the microsystem have been implemented: planar and a capillary tube-based device. Detection of Cr and other chemicals in water samples has been successfully demonstrated with both devices.