快速无参数智能粒子群优化算法

D. P. Tripathi, Mahesh Nayak, Rajaboina Manoj, Surarapu Sudheer
{"title":"快速无参数智能粒子群优化算法","authors":"D. P. Tripathi, Mahesh Nayak, Rajaboina Manoj, Surarapu Sudheer","doi":"10.1109/ICNTE51185.2021.9487738","DOIUrl":null,"url":null,"abstract":"The qualitative value of an optimization technique depends upon the way it explores and exploits the search region. The proposed Smart PSO (SPSO) is a new version of PSO that uses the swarm particles smart behavior in the search space to solve global optimization problems. Unlike the traditional PSO algorithm, SPSO does not depends upon the initial velocities of the particles during successive iteration. It converges the particle towards global optima using cognitive and social knowledge only. This personal environment and social information gives the algorithm a fast capability of exploitation and exploration This fact has been supported by empirical simulation of seven standard benchmark functions and the comparative results clearly evident that SPSO is better than DIW-PSO, Rand-PSO and QPSO.","PeriodicalId":358412,"journal":{"name":"2021 4th Biennial International Conference on Nascent Technologies in Engineering (ICNTE)","volume":"212 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast parameter free Smart particle swarm optimization (SPSO)\",\"authors\":\"D. P. Tripathi, Mahesh Nayak, Rajaboina Manoj, Surarapu Sudheer\",\"doi\":\"10.1109/ICNTE51185.2021.9487738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The qualitative value of an optimization technique depends upon the way it explores and exploits the search region. The proposed Smart PSO (SPSO) is a new version of PSO that uses the swarm particles smart behavior in the search space to solve global optimization problems. Unlike the traditional PSO algorithm, SPSO does not depends upon the initial velocities of the particles during successive iteration. It converges the particle towards global optima using cognitive and social knowledge only. This personal environment and social information gives the algorithm a fast capability of exploitation and exploration This fact has been supported by empirical simulation of seven standard benchmark functions and the comparative results clearly evident that SPSO is better than DIW-PSO, Rand-PSO and QPSO.\",\"PeriodicalId\":358412,\"journal\":{\"name\":\"2021 4th Biennial International Conference on Nascent Technologies in Engineering (ICNTE)\",\"volume\":\"212 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 4th Biennial International Conference on Nascent Technologies in Engineering (ICNTE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNTE51185.2021.9487738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th Biennial International Conference on Nascent Technologies in Engineering (ICNTE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNTE51185.2021.9487738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

优化技术的定性价值取决于它探索和利用搜索区域的方式。本文提出的智能粒子群算法(Smart PSO, SPSO)是一种利用群粒子在搜索空间中的智能行为来解决全局优化问题的新型粒子群算法。与传统粒子群算法不同,粒子群算法在连续迭代过程中不依赖于粒子的初始速度。它只使用认知和社会知识将粒子收敛到全局最优。这种个人环境和社会信息赋予了算法快速挖掘和探索的能力,这一事实得到了七个标准基准函数的经验模拟的支持,对比结果清楚地表明,SPSO优于DIW-PSO、Rand-PSO和QPSO。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast parameter free Smart particle swarm optimization (SPSO)
The qualitative value of an optimization technique depends upon the way it explores and exploits the search region. The proposed Smart PSO (SPSO) is a new version of PSO that uses the swarm particles smart behavior in the search space to solve global optimization problems. Unlike the traditional PSO algorithm, SPSO does not depends upon the initial velocities of the particles during successive iteration. It converges the particle towards global optima using cognitive and social knowledge only. This personal environment and social information gives the algorithm a fast capability of exploitation and exploration This fact has been supported by empirical simulation of seven standard benchmark functions and the comparative results clearly evident that SPSO is better than DIW-PSO, Rand-PSO and QPSO.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信