用于高温功率转换的SiC-CMOS数字电路

M. Barlow, A. Francis, N. Chiolino, J. Holmes, A. Abbasi, H. Mantooth
{"title":"用于高温功率转换的SiC-CMOS数字电路","authors":"M. Barlow, A. Francis, N. Chiolino, J. Holmes, A. Abbasi, H. Mantooth","doi":"10.1109/WIPDA.2016.7799942","DOIUrl":null,"url":null,"abstract":"Wide bandgap semiconductors allow for the potential of expanded temperature ranges for power and mixed-signal applications. Developments in a Silicon Carbide (SiC) CMOS integrated circuit process have demonstrated high temperature operation at 400 °C and above, paving the way for a SiC-controlled SiC power electronics system capable of operating at high temperatures. A two-phase clock generator with adjustable dead time was developed in a SiC CMOS integrated circuit process. High temperature testing evaluated the design's operation at 470 °C for more than 80 hours. To evaluate the clock generator, a synchronous buck converter was designed using SiC power MOSFETs. Proper conversion was demonstrated with a switching frequency of 250 kHz.","PeriodicalId":431347,"journal":{"name":"2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA)","volume":"54 85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"SiC-CMOS digital circuits for high temperature power conversion\",\"authors\":\"M. Barlow, A. Francis, N. Chiolino, J. Holmes, A. Abbasi, H. Mantooth\",\"doi\":\"10.1109/WIPDA.2016.7799942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wide bandgap semiconductors allow for the potential of expanded temperature ranges for power and mixed-signal applications. Developments in a Silicon Carbide (SiC) CMOS integrated circuit process have demonstrated high temperature operation at 400 °C and above, paving the way for a SiC-controlled SiC power electronics system capable of operating at high temperatures. A two-phase clock generator with adjustable dead time was developed in a SiC CMOS integrated circuit process. High temperature testing evaluated the design's operation at 470 °C for more than 80 hours. To evaluate the clock generator, a synchronous buck converter was designed using SiC power MOSFETs. Proper conversion was demonstrated with a switching frequency of 250 kHz.\",\"PeriodicalId\":431347,\"journal\":{\"name\":\"2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA)\",\"volume\":\"54 85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIPDA.2016.7799942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIPDA.2016.7799942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

宽带隙半导体允许扩展功率和混合信号应用的温度范围的潜力。碳化硅(SiC) CMOS集成电路工艺的发展已经证明了在400°C及以上的高温下工作,为能够在高温下工作的SiC控制SiC电力电子系统铺平了道路。采用SiC CMOS集成电路工艺,研制了一种死区可调的两相时钟发生器。高温测试评估了该设计在470°C下运行超过80小时。为了对时钟发生器进行评估,设计了一个使用SiC功率mosfet的同步降压变换器。以250 kHz的开关频率进行了适当的转换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SiC-CMOS digital circuits for high temperature power conversion
Wide bandgap semiconductors allow for the potential of expanded temperature ranges for power and mixed-signal applications. Developments in a Silicon Carbide (SiC) CMOS integrated circuit process have demonstrated high temperature operation at 400 °C and above, paving the way for a SiC-controlled SiC power electronics system capable of operating at high temperatures. A two-phase clock generator with adjustable dead time was developed in a SiC CMOS integrated circuit process. High temperature testing evaluated the design's operation at 470 °C for more than 80 hours. To evaluate the clock generator, a synchronous buck converter was designed using SiC power MOSFETs. Proper conversion was demonstrated with a switching frequency of 250 kHz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信