A. Saxena, Omar Al Zaabi, R. Shankar, Khaled Ali Al Jaafari, K. Al Hosani, Utkal Ranjan Muduli
{"title":"考虑频率稳定性不显著需求的重构电网功能弹性评估","authors":"A. Saxena, Omar Al Zaabi, R. Shankar, Khaled Ali Al Jaafari, K. Al Hosani, Utkal Ranjan Muduli","doi":"10.1109/GlobConHT56829.2023.10087705","DOIUrl":null,"url":null,"abstract":"This paper highlights the demand response (DR) approach as a useful strategy to improve frequency management in a contract violation scenario involving a restructured power network. The analysis is carried out in the DR framework with the integration of the thermal plant, the biogas unit, the solar thermal trough (PTST), and the wind farms. However, an electric vehicle (EV) application is utilized that jointly meets some of the uncontracted demand. A thorough examination of the test system that uses the DR technique greatly enhances the frequency regulation services, which provide a significant improvement over conventional frequency regulation in terms of system dynamics. Sensitivity analysis with a ± 25% variation in system parameters is also taken into account while analyzing system dynamic behavior using the DR framework.","PeriodicalId":355921,"journal":{"name":"2023 IEEE IAS Global Conference on Renewable Energy and Hydrogen Technologies (GlobConHT)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional Resilience Assessment of Restructured Power Grid Considering Insignificant Demands for Frequency Stability\",\"authors\":\"A. Saxena, Omar Al Zaabi, R. Shankar, Khaled Ali Al Jaafari, K. Al Hosani, Utkal Ranjan Muduli\",\"doi\":\"10.1109/GlobConHT56829.2023.10087705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper highlights the demand response (DR) approach as a useful strategy to improve frequency management in a contract violation scenario involving a restructured power network. The analysis is carried out in the DR framework with the integration of the thermal plant, the biogas unit, the solar thermal trough (PTST), and the wind farms. However, an electric vehicle (EV) application is utilized that jointly meets some of the uncontracted demand. A thorough examination of the test system that uses the DR technique greatly enhances the frequency regulation services, which provide a significant improvement over conventional frequency regulation in terms of system dynamics. Sensitivity analysis with a ± 25% variation in system parameters is also taken into account while analyzing system dynamic behavior using the DR framework.\",\"PeriodicalId\":355921,\"journal\":{\"name\":\"2023 IEEE IAS Global Conference on Renewable Energy and Hydrogen Technologies (GlobConHT)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE IAS Global Conference on Renewable Energy and Hydrogen Technologies (GlobConHT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobConHT56829.2023.10087705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE IAS Global Conference on Renewable Energy and Hydrogen Technologies (GlobConHT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobConHT56829.2023.10087705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Functional Resilience Assessment of Restructured Power Grid Considering Insignificant Demands for Frequency Stability
This paper highlights the demand response (DR) approach as a useful strategy to improve frequency management in a contract violation scenario involving a restructured power network. The analysis is carried out in the DR framework with the integration of the thermal plant, the biogas unit, the solar thermal trough (PTST), and the wind farms. However, an electric vehicle (EV) application is utilized that jointly meets some of the uncontracted demand. A thorough examination of the test system that uses the DR technique greatly enhances the frequency regulation services, which provide a significant improvement over conventional frequency regulation in terms of system dynamics. Sensitivity analysis with a ± 25% variation in system parameters is also taken into account while analyzing system dynamic behavior using the DR framework.