基于轨迹数据的区域出租车服务率分析与预测

Shu Yang, Junming Zhang, Zhihan Liu, Jinglin Li
{"title":"基于轨迹数据的区域出租车服务率分析与预测","authors":"Shu Yang, Junming Zhang, Zhihan Liu, Jinglin Li","doi":"10.1109/ICTIS.2015.7232152","DOIUrl":null,"url":null,"abstract":"Taxicab companies want a solution for undersupply (oversupply) problem to boost profits. Finding regional taxicab demand is the key for reducing this disequilibrium. In this paper we investigate a taxicab demand model characterized by estimating demand distribution and recovering sparse data. When more and more trajectories accumulate, statistical characters gradually emerge, revealing a spatiotemporal correlated model. Three methods are addressed on this model: Parzen window estimation is used to get every-hour TSR (taxi service rate). Then, we leverage collaborative filtering to recover corrupted data. A TSR based neural network is to predict the demand. Experimental study is on real Beijing trajectory data, the result demonstrates that our proposed methods are able to feature taxicab demand and to provide dynamic demand prediction.","PeriodicalId":389628,"journal":{"name":"2015 International Conference on Transportation Information and Safety (ICTIS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On analyzing and predicting regional taxicab service rate from trajectory data\",\"authors\":\"Shu Yang, Junming Zhang, Zhihan Liu, Jinglin Li\",\"doi\":\"10.1109/ICTIS.2015.7232152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Taxicab companies want a solution for undersupply (oversupply) problem to boost profits. Finding regional taxicab demand is the key for reducing this disequilibrium. In this paper we investigate a taxicab demand model characterized by estimating demand distribution and recovering sparse data. When more and more trajectories accumulate, statistical characters gradually emerge, revealing a spatiotemporal correlated model. Three methods are addressed on this model: Parzen window estimation is used to get every-hour TSR (taxi service rate). Then, we leverage collaborative filtering to recover corrupted data. A TSR based neural network is to predict the demand. Experimental study is on real Beijing trajectory data, the result demonstrates that our proposed methods are able to feature taxicab demand and to provide dynamic demand prediction.\",\"PeriodicalId\":389628,\"journal\":{\"name\":\"2015 International Conference on Transportation Information and Safety (ICTIS)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Transportation Information and Safety (ICTIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTIS.2015.7232152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Transportation Information and Safety (ICTIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTIS.2015.7232152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

出租车公司希望解决供应不足(供过于求)的问题,以提高利润。寻找区域出租车需求是减少这种不平衡的关键。本文研究了一种以估计需求分布和恢复稀疏数据为特征的出租车需求模型。当越来越多的轨迹积累时,统计特征逐渐显现,揭示出一个时空相关模型。该模型采用了三种方法:利用Parzen窗口估计得到每小时出租车服务率(TSR);然后,我们利用协同过滤来恢复损坏的数据。采用基于TSR的神经网络进行需求预测。在北京市的实际轨道数据上进行了实验研究,结果表明,本文提出的方法能够很好地刻画出租车的需求特征,并提供动态的需求预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On analyzing and predicting regional taxicab service rate from trajectory data
Taxicab companies want a solution for undersupply (oversupply) problem to boost profits. Finding regional taxicab demand is the key for reducing this disequilibrium. In this paper we investigate a taxicab demand model characterized by estimating demand distribution and recovering sparse data. When more and more trajectories accumulate, statistical characters gradually emerge, revealing a spatiotemporal correlated model. Three methods are addressed on this model: Parzen window estimation is used to get every-hour TSR (taxi service rate). Then, we leverage collaborative filtering to recover corrupted data. A TSR based neural network is to predict the demand. Experimental study is on real Beijing trajectory data, the result demonstrates that our proposed methods are able to feature taxicab demand and to provide dynamic demand prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信