有限集值观测目标跟踪的贝叶斯方法

B. Vo, B. Vo, A. Cantoni
{"title":"有限集值观测目标跟踪的贝叶斯方法","authors":"B. Vo, B. Vo, A. Cantoni","doi":"10.1109/ISIC.2007.4450929","DOIUrl":null,"url":null,"abstract":"This paper presents a Bayes recursion for tracking a target that generates multiple measurements with state dependent sensor field of view and clutter. Our Bayesian formulation is mathematically well-founded due to our use of a mathematically consistent likelihood function derived from random finite set theory. A particle implementation of the proposed filter is given. Under linear Gaussian assumptions, an exact closed form solution to the proposed recursion is derived, and efficient implementations are given.","PeriodicalId":184867,"journal":{"name":"2007 IEEE 22nd International Symposium on Intelligent Control","volume":"278 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Bayesian Approach to Target Tracking with Finite-Set-Valued Observations\",\"authors\":\"B. Vo, B. Vo, A. Cantoni\",\"doi\":\"10.1109/ISIC.2007.4450929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a Bayes recursion for tracking a target that generates multiple measurements with state dependent sensor field of view and clutter. Our Bayesian formulation is mathematically well-founded due to our use of a mathematically consistent likelihood function derived from random finite set theory. A particle implementation of the proposed filter is given. Under linear Gaussian assumptions, an exact closed form solution to the proposed recursion is derived, and efficient implementations are given.\",\"PeriodicalId\":184867,\"journal\":{\"name\":\"2007 IEEE 22nd International Symposium on Intelligent Control\",\"volume\":\"278 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 22nd International Symposium on Intelligent Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.2007.4450929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 22nd International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2007.4450929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种贝叶斯递归方法,用于跟踪具有状态相关传感器视场和杂波的目标。我们的贝叶斯公式在数学上是有良好基础的,因为我们使用了一个从随机有限集理论衍生出来的数学上一致的似然函数。给出了该滤波器的粒子实现。在线性高斯假设下,给出了该递推的精确封闭解,并给出了有效的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bayesian Approach to Target Tracking with Finite-Set-Valued Observations
This paper presents a Bayes recursion for tracking a target that generates multiple measurements with state dependent sensor field of view and clutter. Our Bayesian formulation is mathematically well-founded due to our use of a mathematically consistent likelihood function derived from random finite set theory. A particle implementation of the proposed filter is given. Under linear Gaussian assumptions, an exact closed form solution to the proposed recursion is derived, and efficient implementations are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信