研究大规模并行时间扭曲内核的内存特性

A. Holder, C. Carothers
{"title":"研究大规模并行时间扭曲内核的内存特性","authors":"A. Holder, C. Carothers","doi":"10.1109/WSC.2011.6147997","DOIUrl":null,"url":null,"abstract":"Recently, Time Warp has shown that it achieves good strong scaling to hundreds of thousands of processors on modern supercomputer systems. These results were achieved on the Cray and IBM Blue Gene supercomputing platforms. In this paper, we investigate the ROSS Time Warp cache memory performance on (i) a commodity shared-memory desktop system based on the Intel E5504 processor and (ii) the IBM Blue Gene/L when configured to run over the standard Message Passing Interface (MPI) library.","PeriodicalId":246140,"journal":{"name":"Proceedings of the 2011 Winter Simulation Conference (WSC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the memory characteristics of a massively parallel Time Warp kernel\",\"authors\":\"A. Holder, C. Carothers\",\"doi\":\"10.1109/WSC.2011.6147997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, Time Warp has shown that it achieves good strong scaling to hundreds of thousands of processors on modern supercomputer systems. These results were achieved on the Cray and IBM Blue Gene supercomputing platforms. In this paper, we investigate the ROSS Time Warp cache memory performance on (i) a commodity shared-memory desktop system based on the Intel E5504 processor and (ii) the IBM Blue Gene/L when configured to run over the standard Message Passing Interface (MPI) library.\",\"PeriodicalId\":246140,\"journal\":{\"name\":\"Proceedings of the 2011 Winter Simulation Conference (WSC)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2011 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2011.6147997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2011 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2011.6147997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,Time Warp已经证明,它在现代超级计算机系统上实现了强大的扩展,可以容纳数十万个处理器。这些结果是在克雷和IBM蓝色基因超级计算平台上实现的。在本文中,我们研究了(i)基于Intel E5504处理器的商用共享内存桌面系统和(ii)配置为在标准消息传递接口(MPI)库上运行时的IBM Blue Gene/L上的ROSS Time Warp高速缓存性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating the memory characteristics of a massively parallel Time Warp kernel
Recently, Time Warp has shown that it achieves good strong scaling to hundreds of thousands of processors on modern supercomputer systems. These results were achieved on the Cray and IBM Blue Gene supercomputing platforms. In this paper, we investigate the ROSS Time Warp cache memory performance on (i) a commodity shared-memory desktop system based on the Intel E5504 processor and (ii) the IBM Blue Gene/L when configured to run over the standard Message Passing Interface (MPI) library.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信