{"title":"用双谱特征对正常和病理性婴儿哭声进行分类","authors":"Anshu Chittora, H. Patil","doi":"10.1109/EUSIPCO.2015.7362461","DOIUrl":null,"url":null,"abstract":"In this paper, bispectrum-based feature extraction method is proposed for classification of normal vs. pathological infant cries. Bispectrum is computed for all segments of normal as well as pathological cries. Bispectrum is a two-dimensional (2-D) feature. A tensor is formed using these bispectrum features and then for feature reduction, higher order singular value decomposition theorem (HOSVD) is applied. Our experimental results show 70.56 % average accuracy of classification with support vector machine (SVM) classifier, whereas baseline features, viz., MFCC, LPC and PLP gave classification accuracy of 52.41 %, 61.27 % and 57.41 %, respectively. For showing the effectiveness of the proposed feature extraction method, a comparison with other feature extraction methods which uses diagonal slice and peaks and their locations as feature vectors is given as well.","PeriodicalId":401040,"journal":{"name":"2015 23rd European Signal Processing Conference (EUSIPCO)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Classification of normal and pathological infant cries using bispectrum features\",\"authors\":\"Anshu Chittora, H. Patil\",\"doi\":\"10.1109/EUSIPCO.2015.7362461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, bispectrum-based feature extraction method is proposed for classification of normal vs. pathological infant cries. Bispectrum is computed for all segments of normal as well as pathological cries. Bispectrum is a two-dimensional (2-D) feature. A tensor is formed using these bispectrum features and then for feature reduction, higher order singular value decomposition theorem (HOSVD) is applied. Our experimental results show 70.56 % average accuracy of classification with support vector machine (SVM) classifier, whereas baseline features, viz., MFCC, LPC and PLP gave classification accuracy of 52.41 %, 61.27 % and 57.41 %, respectively. For showing the effectiveness of the proposed feature extraction method, a comparison with other feature extraction methods which uses diagonal slice and peaks and their locations as feature vectors is given as well.\",\"PeriodicalId\":401040,\"journal\":{\"name\":\"2015 23rd European Signal Processing Conference (EUSIPCO)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 23rd European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUSIPCO.2015.7362461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2015.7362461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classification of normal and pathological infant cries using bispectrum features
In this paper, bispectrum-based feature extraction method is proposed for classification of normal vs. pathological infant cries. Bispectrum is computed for all segments of normal as well as pathological cries. Bispectrum is a two-dimensional (2-D) feature. A tensor is formed using these bispectrum features and then for feature reduction, higher order singular value decomposition theorem (HOSVD) is applied. Our experimental results show 70.56 % average accuracy of classification with support vector machine (SVM) classifier, whereas baseline features, viz., MFCC, LPC and PLP gave classification accuracy of 52.41 %, 61.27 % and 57.41 %, respectively. For showing the effectiveness of the proposed feature extraction method, a comparison with other feature extraction methods which uses diagonal slice and peaks and their locations as feature vectors is given as well.