多项式动力系统全局指数稳定性的代数方法

Zhikun She, Huanfeng Liu, Haoyang Li
{"title":"多项式动力系统全局指数稳定性的代数方法","authors":"Zhikun She, Huanfeng Liu, Haoyang Li","doi":"10.1109/ISCID.2013.104","DOIUrl":null,"url":null,"abstract":"This paper presents a constructive method for analyzing globally exponential stability of polynomial dynamical systems by discovering quadratic Lyapunov functions. First, we derive an algebraic sufficient condition for analyzing globally exponential stability. Then, we apply a real root classification (RRC) based method step by step to under-approximate this derived condition as a semi-algebraic set which only involves the parametric coefficients of the candidate polynomials and the parameter associated with the exponential decay rate. Finally, we compute a sample point in the resulting semi algebraic set for the parameters resulting in a Lyapunov function and an exponential decay rate. The experimental results and comparisons demonstrate the feasibility and promise of our approach.","PeriodicalId":297027,"journal":{"name":"2013 Sixth International Symposium on Computational Intelligence and Design","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Algebraic Approach on Globally Exponential Stability of Polynomial Dynamical Systems\",\"authors\":\"Zhikun She, Huanfeng Liu, Haoyang Li\",\"doi\":\"10.1109/ISCID.2013.104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a constructive method for analyzing globally exponential stability of polynomial dynamical systems by discovering quadratic Lyapunov functions. First, we derive an algebraic sufficient condition for analyzing globally exponential stability. Then, we apply a real root classification (RRC) based method step by step to under-approximate this derived condition as a semi-algebraic set which only involves the parametric coefficients of the candidate polynomials and the parameter associated with the exponential decay rate. Finally, we compute a sample point in the resulting semi algebraic set for the parameters resulting in a Lyapunov function and an exponential decay rate. The experimental results and comparisons demonstrate the feasibility and promise of our approach.\",\"PeriodicalId\":297027,\"journal\":{\"name\":\"2013 Sixth International Symposium on Computational Intelligence and Design\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Sixth International Symposium on Computational Intelligence and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCID.2013.104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Sixth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2013.104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过发现二次李雅普诺夫函数,提出了一种分析多项式动力系统全局指数稳定性的构造方法。首先,给出了全局指数稳定性分析的一个代数充分条件。然后,我们应用基于实数根分类(RRC)的方法逐步将该导出条件下逼近为只涉及候选多项式的参数系数和与指数衰减率相关的参数的半代数集。最后,我们在得到的参数半代数集中计算一个样本点,从而得到一个Lyapunov函数和一个指数衰减率。实验结果和比较表明了该方法的可行性和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Algebraic Approach on Globally Exponential Stability of Polynomial Dynamical Systems
This paper presents a constructive method for analyzing globally exponential stability of polynomial dynamical systems by discovering quadratic Lyapunov functions. First, we derive an algebraic sufficient condition for analyzing globally exponential stability. Then, we apply a real root classification (RRC) based method step by step to under-approximate this derived condition as a semi-algebraic set which only involves the parametric coefficients of the candidate polynomials and the parameter associated with the exponential decay rate. Finally, we compute a sample point in the resulting semi algebraic set for the parameters resulting in a Lyapunov function and an exponential decay rate. The experimental results and comparisons demonstrate the feasibility and promise of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信