{"title":"Alethea:一个可证明的安全随机样本投票协议","authors":"D. Basin, S. Radomirovic, Lara Schmid","doi":"10.1109/CSF.2018.00028","DOIUrl":null,"url":null,"abstract":"In random sample voting, only a randomly chosen subset of all eligible voters are selected to vote. This poses new security challenges for the voting protocol used. In particular, one must ensure that the chosen voters were randomly selected while preserving their anonymity. Moreover, the small number of selected voters leaves little room for error and only a few manipulations of the votes may significantly change the outcome. We propose Alethea, the first random sample voting protocol that satisfies end-to-end verifiability and receipt-freeness. Our protocol makes explicit the distinction between human voters and their devices. This allows for more fine-grained statements about the required capabilities and trust assumptions of each agent than is possible in previous work. We define new security properties related to the randomness and anonymity of the sample group and the probability of undetected manipulations. We prove correctness of the protocol and its properties both using traditional paper and pen proofs and with tool support.","PeriodicalId":417032,"journal":{"name":"2018 IEEE 31st Computer Security Foundations Symposium (CSF)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Alethea: A Provably Secure Random Sample Voting Protocol\",\"authors\":\"D. Basin, S. Radomirovic, Lara Schmid\",\"doi\":\"10.1109/CSF.2018.00028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In random sample voting, only a randomly chosen subset of all eligible voters are selected to vote. This poses new security challenges for the voting protocol used. In particular, one must ensure that the chosen voters were randomly selected while preserving their anonymity. Moreover, the small number of selected voters leaves little room for error and only a few manipulations of the votes may significantly change the outcome. We propose Alethea, the first random sample voting protocol that satisfies end-to-end verifiability and receipt-freeness. Our protocol makes explicit the distinction between human voters and their devices. This allows for more fine-grained statements about the required capabilities and trust assumptions of each agent than is possible in previous work. We define new security properties related to the randomness and anonymity of the sample group and the probability of undetected manipulations. We prove correctness of the protocol and its properties both using traditional paper and pen proofs and with tool support.\",\"PeriodicalId\":417032,\"journal\":{\"name\":\"2018 IEEE 31st Computer Security Foundations Symposium (CSF)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 31st Computer Security Foundations Symposium (CSF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSF.2018.00028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 31st Computer Security Foundations Symposium (CSF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSF.2018.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Alethea: A Provably Secure Random Sample Voting Protocol
In random sample voting, only a randomly chosen subset of all eligible voters are selected to vote. This poses new security challenges for the voting protocol used. In particular, one must ensure that the chosen voters were randomly selected while preserving their anonymity. Moreover, the small number of selected voters leaves little room for error and only a few manipulations of the votes may significantly change the outcome. We propose Alethea, the first random sample voting protocol that satisfies end-to-end verifiability and receipt-freeness. Our protocol makes explicit the distinction between human voters and their devices. This allows for more fine-grained statements about the required capabilities and trust assumptions of each agent than is possible in previous work. We define new security properties related to the randomness and anonymity of the sample group and the probability of undetected manipulations. We prove correctness of the protocol and its properties both using traditional paper and pen proofs and with tool support.