使用机器学习和深度学习技术的多域网络流量分析

Dincy R. Arikkat, A. RafidhaRehimanK., P. Vinod, S. Yerima, W. Manoja, S. Pooja, Shilpa Sekhar, Sohan James, Josna Philomina
{"title":"使用机器学习和深度学习技术的多域网络流量分析","authors":"Dincy R. Arikkat, A. RafidhaRehimanK., P. Vinod, S. Yerima, W. Manoja, S. Pooja, Shilpa Sekhar, Sohan James, Josna Philomina","doi":"10.1145/3549206.3549262","DOIUrl":null,"url":null,"abstract":"Recent heterogeneous computing facilities and data explosion introduce challenges in network traffic analysis and demand intelligence-based approaches to ensure cyber security and the protection of online digital services. Researchers have been proposing various machine and deep learning approaches for network traffic analysis in different problem domains. However, it is also crucial to understand how these algorithms perform across the different domains. Hence in this research work we extend an analysis of diverse machine learning and deep learning techniques across three different problem domains: DDoS attack detection, Malicious URL detection and Tor traffic classification. We employ three publicly available datasets to train eight different machine learning and six deep learning models for both multi-class and binary classification in our comparative study. Our experiments show that Random Forest achieved superior performance compared to other machine learning models with F-measure of 92% for multi-class traffic classification and 100% for binary classification problems. For the deep learning models, Autoencoder with Random Forest achieved superior performance with an F-measure of 89% and 100% for multi-class and binary problems respectively.","PeriodicalId":199675,"journal":{"name":"Proceedings of the 2022 Fourteenth International Conference on Contemporary Computing","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-Domain Network Traffic Analysis using Machine Learning and Deep Learning Techniques\",\"authors\":\"Dincy R. Arikkat, A. RafidhaRehimanK., P. Vinod, S. Yerima, W. Manoja, S. Pooja, Shilpa Sekhar, Sohan James, Josna Philomina\",\"doi\":\"10.1145/3549206.3549262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent heterogeneous computing facilities and data explosion introduce challenges in network traffic analysis and demand intelligence-based approaches to ensure cyber security and the protection of online digital services. Researchers have been proposing various machine and deep learning approaches for network traffic analysis in different problem domains. However, it is also crucial to understand how these algorithms perform across the different domains. Hence in this research work we extend an analysis of diverse machine learning and deep learning techniques across three different problem domains: DDoS attack detection, Malicious URL detection and Tor traffic classification. We employ three publicly available datasets to train eight different machine learning and six deep learning models for both multi-class and binary classification in our comparative study. Our experiments show that Random Forest achieved superior performance compared to other machine learning models with F-measure of 92% for multi-class traffic classification and 100% for binary classification problems. For the deep learning models, Autoencoder with Random Forest achieved superior performance with an F-measure of 89% and 100% for multi-class and binary problems respectively.\",\"PeriodicalId\":199675,\"journal\":{\"name\":\"Proceedings of the 2022 Fourteenth International Conference on Contemporary Computing\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 Fourteenth International Conference on Contemporary Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3549206.3549262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 Fourteenth International Conference on Contemporary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3549206.3549262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最近的异构计算设施和数据爆炸给网络流量分析带来了挑战,需要基于智能的方法来确保网络安全和保护在线数字服务。研究人员已经提出了各种机器和深度学习方法,用于不同问题领域的网络流量分析。然而,理解这些算法在不同领域的表现也是至关重要的。因此,在这项研究工作中,我们扩展了对三个不同问题领域的不同机器学习和深度学习技术的分析:DDoS攻击检测,恶意URL检测和Tor流量分类。在我们的比较研究中,我们使用三个公开可用的数据集来训练八种不同的机器学习和六种深度学习模型,用于多类和二元分类。我们的实验表明,与其他机器学习模型相比,Random Forest在多类流量分类方面的F-measure为92%,在二元分类问题上的F-measure为100%,取得了更好的性能。对于深度学习模型,带有Random Forest的Autoencoder在多类和二元问题上分别取得了89%和100%的F-measure的优异性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Domain Network Traffic Analysis using Machine Learning and Deep Learning Techniques
Recent heterogeneous computing facilities and data explosion introduce challenges in network traffic analysis and demand intelligence-based approaches to ensure cyber security and the protection of online digital services. Researchers have been proposing various machine and deep learning approaches for network traffic analysis in different problem domains. However, it is also crucial to understand how these algorithms perform across the different domains. Hence in this research work we extend an analysis of diverse machine learning and deep learning techniques across three different problem domains: DDoS attack detection, Malicious URL detection and Tor traffic classification. We employ three publicly available datasets to train eight different machine learning and six deep learning models for both multi-class and binary classification in our comparative study. Our experiments show that Random Forest achieved superior performance compared to other machine learning models with F-measure of 92% for multi-class traffic classification and 100% for binary classification problems. For the deep learning models, Autoencoder with Random Forest achieved superior performance with an F-measure of 89% and 100% for multi-class and binary problems respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信