使用深度学习的乳腺癌检测和诊断

Mohammad Ashik Alahe, M. Maniruzzaman
{"title":"使用深度学习的乳腺癌检测和诊断","authors":"Mohammad Ashik Alahe, M. Maniruzzaman","doi":"10.1109/TENSYMP52854.2021.9550975","DOIUrl":null,"url":null,"abstract":"Breast Cancer (BC) is a cancerous growth that is a result of uncontrolled cell division in the mammary tissues, usually in the ducts and in the lobules. BC is the most dominant fast-growing cancer and one of the leading cause of cancer mortality in women. BC incidents are increasing swiftly every year around the world especially in developing countries due to grown life expectancy and assumption of western culture. The conventional process of detecting BC involves a clinical expert who observed the medical images of affected breast tissues and looks for structural changes, irregularities in cell forms, ordination of cells in the tissue and determining the stage of the cancer. As conventional interpretation is often time consuming, expensive and error prone; computer-aided detection (CAD) technique is used as an alternative to provide a more accurate, automatic, fast and reproducible procedure to detect BC. This research presents a fully automatic process of BC detection. Two well know filter such as Gaussian Blur (GB) and Detail Enhanced (DE) filter has been used here for the preprocessing purpose. Convolutional Neural Network (CNN) classifier has been used here for classification. The proposed model is performed on an openly accessible dataset named Breast Histopathology Image dataset and the outcome exhibits the sharpness of our proposed model. The obtained accuracy is 87.49%, 88.46% and 88.10% in Case-I, Case-II and Case-III, respectively.","PeriodicalId":137485,"journal":{"name":"2021 IEEE Region 10 Symposium (TENSYMP)","volume":"228 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detection and Diagnosis of Breast Cancer Using Deep Learning\",\"authors\":\"Mohammad Ashik Alahe, M. Maniruzzaman\",\"doi\":\"10.1109/TENSYMP52854.2021.9550975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Breast Cancer (BC) is a cancerous growth that is a result of uncontrolled cell division in the mammary tissues, usually in the ducts and in the lobules. BC is the most dominant fast-growing cancer and one of the leading cause of cancer mortality in women. BC incidents are increasing swiftly every year around the world especially in developing countries due to grown life expectancy and assumption of western culture. The conventional process of detecting BC involves a clinical expert who observed the medical images of affected breast tissues and looks for structural changes, irregularities in cell forms, ordination of cells in the tissue and determining the stage of the cancer. As conventional interpretation is often time consuming, expensive and error prone; computer-aided detection (CAD) technique is used as an alternative to provide a more accurate, automatic, fast and reproducible procedure to detect BC. This research presents a fully automatic process of BC detection. Two well know filter such as Gaussian Blur (GB) and Detail Enhanced (DE) filter has been used here for the preprocessing purpose. Convolutional Neural Network (CNN) classifier has been used here for classification. The proposed model is performed on an openly accessible dataset named Breast Histopathology Image dataset and the outcome exhibits the sharpness of our proposed model. The obtained accuracy is 87.49%, 88.46% and 88.10% in Case-I, Case-II and Case-III, respectively.\",\"PeriodicalId\":137485,\"journal\":{\"name\":\"2021 IEEE Region 10 Symposium (TENSYMP)\",\"volume\":\"228 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Region 10 Symposium (TENSYMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENSYMP52854.2021.9550975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENSYMP52854.2021.9550975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

乳腺癌(BC)是由于乳腺组织中不受控制的细胞分裂导致的癌性生长,通常发生在乳腺导管和乳腺小叶中。BC是最主要的快速生长的癌症,也是女性癌症死亡的主要原因之一。由于预期寿命的增长和西方文化的假设,世界各地的BC事件每年都在迅速增加,尤其是在发展中国家。检测乳腺癌的传统方法包括临床专家观察受影响乳腺组织的医学图像,寻找结构变化、细胞形态的不规则性、组织中细胞的排列和确定癌症的阶段。由于传统的口译往往耗时、昂贵且容易出错;计算机辅助检测(CAD)技术被用作一种替代方法,以提供更准确、自动、快速和可重复的程序来检测BC。本研究提出了一种全自动的BC检测方法。两种众所周知的滤波器,如高斯模糊(GB)和细节增强(DE)滤波器在这里被用于预处理目的。这里使用卷积神经网络(CNN)分类器进行分类。该模型在一个开放访问的数据集乳腺组织病理学图像数据集上执行,结果显示了我们提出的模型的清晰度。Case-I、Case-II和Case-III的准确率分别为87.49%、88.46%和88.10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection and Diagnosis of Breast Cancer Using Deep Learning
Breast Cancer (BC) is a cancerous growth that is a result of uncontrolled cell division in the mammary tissues, usually in the ducts and in the lobules. BC is the most dominant fast-growing cancer and one of the leading cause of cancer mortality in women. BC incidents are increasing swiftly every year around the world especially in developing countries due to grown life expectancy and assumption of western culture. The conventional process of detecting BC involves a clinical expert who observed the medical images of affected breast tissues and looks for structural changes, irregularities in cell forms, ordination of cells in the tissue and determining the stage of the cancer. As conventional interpretation is often time consuming, expensive and error prone; computer-aided detection (CAD) technique is used as an alternative to provide a more accurate, automatic, fast and reproducible procedure to detect BC. This research presents a fully automatic process of BC detection. Two well know filter such as Gaussian Blur (GB) and Detail Enhanced (DE) filter has been used here for the preprocessing purpose. Convolutional Neural Network (CNN) classifier has been used here for classification. The proposed model is performed on an openly accessible dataset named Breast Histopathology Image dataset and the outcome exhibits the sharpness of our proposed model. The obtained accuracy is 87.49%, 88.46% and 88.10% in Case-I, Case-II and Case-III, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信