Aditya Wadanur, Aprilisa Arum Sari
{"title":"Implementasi Algoritma Apriori dan FP-Growth pada Penjualan Spareparts","authors":"Aditya Wadanur, Aprilisa Arum Sari","doi":"10.29408/edumatic.v6i1.5470","DOIUrl":null,"url":null,"abstract":"Data Mining can be applied in various areas, for example in PT. Agung Toyota Denpasar in order to increase sales and determine the sale of replacement parts. The current problem is to determine the replacement parts sale in PT. Agung Toyota Denpasar cannot know the purchasing habits of customers or customers in purchasing replacement parts purchased simultaneously. This research aims to implement apriori algorithms and fp-growth algorithms to form a model or a combination of rules so that businesses can increase their sales. Using the Knowledge Discovery Database (KDD) method should provide significant information on transaction patterns purchased simultaneously using the apriori and fp-growth algorithms. The dataset used to support this research is the sales transactional dataset for the period of January 2022. The results showed that the 10 best association rules of apriori algorithms and fp-growth algorithms were ready to be used to increase sales with a minimum support value of 85%, confidence value of 100%, and the highest lift ratio of 2.03.","PeriodicalId":314771,"journal":{"name":"Edumatic: Jurnal Pendidikan Informatika","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Edumatic: Jurnal Pendidikan Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29408/edumatic.v6i1.5470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

数据挖掘可以应用于各个领域,例如在PT. Agung Toyota Denpasar,为了增加销售和确定更换零件的销售。目前的问题是确定替换件在PT的销售情况。Agung丰田登巴萨无法了解客户的购买习惯,也无法了解客户在购买同时购买的替换件时的购买习惯。本研究旨在通过运用先验算法和fp-growth算法,形成一个模型或规则组合,使企业能够提高销售额。使用知识发现数据库(KDD)方法可以提供同时使用先验算法和fp增长算法购买的交易模式的重要信息。用于支持本研究的数据集是2022年1月期间的销售交易数据集。结果表明,先验算法和fp-growth算法的10个最佳关联规则可以用于增加销售,最小支持值为85%,置信度为100%,提升率最高为2.03。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementasi Algoritma Apriori dan FP-Growth pada Penjualan Spareparts
Data Mining can be applied in various areas, for example in PT. Agung Toyota Denpasar in order to increase sales and determine the sale of replacement parts. The current problem is to determine the replacement parts sale in PT. Agung Toyota Denpasar cannot know the purchasing habits of customers or customers in purchasing replacement parts purchased simultaneously. This research aims to implement apriori algorithms and fp-growth algorithms to form a model or a combination of rules so that businesses can increase their sales. Using the Knowledge Discovery Database (KDD) method should provide significant information on transaction patterns purchased simultaneously using the apriori and fp-growth algorithms. The dataset used to support this research is the sales transactional dataset for the period of January 2022. The results showed that the 10 best association rules of apriori algorithms and fp-growth algorithms were ready to be used to increase sales with a minimum support value of 85%, confidence value of 100%, and the highest lift ratio of 2.03.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信