基于二元神经网络的可靠性算法

Juan Yang, Yang Lu, Qiang Wang, Lei Yu
{"title":"基于二元神经网络的可靠性算法","authors":"Juan Yang, Yang Lu, Qiang Wang, Lei Yu","doi":"10.1109/ANTHOLOGY.2013.6784859","DOIUrl":null,"url":null,"abstract":"According to the limitation in the research of reliability, this paper, starting from the generality of complex systems, firstly converts the system components into the linear combination by training the binary neural network, secondly we solve the distribution function of the linear combination. With this method, this paper finally gets a general method to analyse the reliability of arbitrary systems. Finally, this paper gives its theoretical guarantee and this method is also validated through examples.","PeriodicalId":203169,"journal":{"name":"IEEE Conference Anthology","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The reliability algorithm based on binary neural networks\",\"authors\":\"Juan Yang, Yang Lu, Qiang Wang, Lei Yu\",\"doi\":\"10.1109/ANTHOLOGY.2013.6784859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to the limitation in the research of reliability, this paper, starting from the generality of complex systems, firstly converts the system components into the linear combination by training the binary neural network, secondly we solve the distribution function of the linear combination. With this method, this paper finally gets a general method to analyse the reliability of arbitrary systems. Finally, this paper gives its theoretical guarantee and this method is also validated through examples.\",\"PeriodicalId\":203169,\"journal\":{\"name\":\"IEEE Conference Anthology\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Conference Anthology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANTHOLOGY.2013.6784859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference Anthology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANTHOLOGY.2013.6784859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对可靠性研究的局限性,本文从复杂系统的通用性出发,首先通过训练二元神经网络将系统组件转换成线性组合,然后求解线性组合的分布函数。通过这种方法,本文最终得到了一种分析任意系统可靠性的通用方法。最后给出了该方法的理论保证,并通过算例进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The reliability algorithm based on binary neural networks
According to the limitation in the research of reliability, this paper, starting from the generality of complex systems, firstly converts the system components into the linear combination by training the binary neural network, secondly we solve the distribution function of the linear combination. With this method, this paper finally gets a general method to analyse the reliability of arbitrary systems. Finally, this paper gives its theoretical guarantee and this method is also validated through examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信