数据变换下简单线性回归模型最小二乘参数的计算意义。

Igabari J.N
{"title":"数据变换下简单线性回归模型最小二乘参数的计算意义。","authors":"Igabari J.N","doi":"10.5987/UJ-NJSE.16.037.1","DOIUrl":null,"url":null,"abstract":"The Least squares method of parameter estimation is considered important due to its relative simplicity, optimal properties and wide economic applications. This paper examines the computational implications for the estimates of regression parameters for a simple linear regression model when there are changes in units of measurement, leading to a new set of data which is a scaled form of the original data. Expressions for the Least Squares estimates of the regression parameters are derived as well as their precision for the new data in terms of the original data.","PeriodicalId":119603,"journal":{"name":"Nigerian Journal of Science and Environment","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COMPUTATIONAL IMPLICATIONS FOR THE LEAST SQUARES PARAMETERS OF THE SIMPLE LINEAR REGRESSION MODEL UNDER DATA TRANSFORMATION.\",\"authors\":\"Igabari J.N\",\"doi\":\"10.5987/UJ-NJSE.16.037.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Least squares method of parameter estimation is considered important due to its relative simplicity, optimal properties and wide economic applications. This paper examines the computational implications for the estimates of regression parameters for a simple linear regression model when there are changes in units of measurement, leading to a new set of data which is a scaled form of the original data. Expressions for the Least Squares estimates of the regression parameters are derived as well as their precision for the new data in terms of the original data.\",\"PeriodicalId\":119603,\"journal\":{\"name\":\"Nigerian Journal of Science and Environment\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nigerian Journal of Science and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5987/UJ-NJSE.16.037.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nigerian Journal of Science and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5987/UJ-NJSE.16.037.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

参数估计的最小二乘法由于其相对简单、最优的性质和广泛的经济应用而被认为是重要的。本文研究了当测量单位发生变化时,简单线性回归模型的回归参数估计的计算含义,导致一组新的数据是原始数据的缩放形式。推导了回归参数的最小二乘估计表达式,以及新数据相对于原始数据的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COMPUTATIONAL IMPLICATIONS FOR THE LEAST SQUARES PARAMETERS OF THE SIMPLE LINEAR REGRESSION MODEL UNDER DATA TRANSFORMATION.
The Least squares method of parameter estimation is considered important due to its relative simplicity, optimal properties and wide economic applications. This paper examines the computational implications for the estimates of regression parameters for a simple linear regression model when there are changes in units of measurement, leading to a new set of data which is a scaled form of the original data. Expressions for the Least Squares estimates of the regression parameters are derived as well as their precision for the new data in terms of the original data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信