{"title":"用于集成电路成像的最先进的高分辨率3D x射线显微镜","authors":"M. Holler, M. Guizar‐Sicairos, J. Raabe","doi":"10.31399/asm.edfa.2021-2.p013","DOIUrl":null,"url":null,"abstract":"\n X-ray ptychography, as recent studies show, has the potential to bridge the gap that currently exists between conventional X-ray imaging and electron microscopy. This article covers the evolution of the technology from basic 2D imaging to computed tomography to 3D ptychographic X-ray laminography (PyXL) with zoom. To demonstrate the capabilities of PyXL, a 16-nm FinFET logic IC was mechanically polished to a thickness of 20 µm and several regions were imaged at various levels of resolution.","PeriodicalId":431761,"journal":{"name":"EDFA Technical Articles","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State-of-the-Art High-Resolution 3D X-ray Microscopy for Imaging of Integrated Circuits\",\"authors\":\"M. Holler, M. Guizar‐Sicairos, J. Raabe\",\"doi\":\"10.31399/asm.edfa.2021-2.p013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n X-ray ptychography, as recent studies show, has the potential to bridge the gap that currently exists between conventional X-ray imaging and electron microscopy. This article covers the evolution of the technology from basic 2D imaging to computed tomography to 3D ptychographic X-ray laminography (PyXL) with zoom. To demonstrate the capabilities of PyXL, a 16-nm FinFET logic IC was mechanically polished to a thickness of 20 µm and several regions were imaged at various levels of resolution.\",\"PeriodicalId\":431761,\"journal\":{\"name\":\"EDFA Technical Articles\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EDFA Technical Articles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31399/asm.edfa.2021-2.p013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EDFA Technical Articles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.edfa.2021-2.p013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
State-of-the-Art High-Resolution 3D X-ray Microscopy for Imaging of Integrated Circuits
X-ray ptychography, as recent studies show, has the potential to bridge the gap that currently exists between conventional X-ray imaging and electron microscopy. This article covers the evolution of the technology from basic 2D imaging to computed tomography to 3D ptychographic X-ray laminography (PyXL) with zoom. To demonstrate the capabilities of PyXL, a 16-nm FinFET logic IC was mechanically polished to a thickness of 20 µm and several regions were imaged at various levels of resolution.