随机递归神经网络的风险敏感最优控制

Ziqian Liu, R. E. Torres, Miltiadis Kotinis
{"title":"随机递归神经网络的风险敏感最优控制","authors":"Ziqian Liu, R. E. Torres, Miltiadis Kotinis","doi":"10.1109/MWSCAS.2010.5548858","DOIUrl":null,"url":null,"abstract":"As a continuation of our study, this paper extends our research results of optimality-oriented control from deterministic recurrent neural networks to stochastic recurrent neural networks, and presents a new theoretical design for the risk-sensitive optimal control of stochastic recurrent neural networks. The design procedure follows the technique of inverse optimality, and obtains risk-sensitive state feedback controllers that guarantee an achievable meaningful cost for a given risk-sensitivity parameter.","PeriodicalId":245322,"journal":{"name":"2010 53rd IEEE International Midwest Symposium on Circuits and Systems","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Risk-sensitive optimal control for stochastic recurrent neural networks\",\"authors\":\"Ziqian Liu, R. E. Torres, Miltiadis Kotinis\",\"doi\":\"10.1109/MWSCAS.2010.5548858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a continuation of our study, this paper extends our research results of optimality-oriented control from deterministic recurrent neural networks to stochastic recurrent neural networks, and presents a new theoretical design for the risk-sensitive optimal control of stochastic recurrent neural networks. The design procedure follows the technique of inverse optimality, and obtains risk-sensitive state feedback controllers that guarantee an achievable meaningful cost for a given risk-sensitivity parameter.\",\"PeriodicalId\":245322,\"journal\":{\"name\":\"2010 53rd IEEE International Midwest Symposium on Circuits and Systems\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 53rd IEEE International Midwest Symposium on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.2010.5548858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 53rd IEEE International Midwest Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2010.5548858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

作为研究的延续,本文将面向最优控制的研究成果从确定性递归神经网络扩展到随机递归神经网络,提出了随机递归神经网络风险敏感最优控制的新理论设计。设计过程采用逆最优性技术,得到风险敏感状态反馈控制器,保证给定的风险敏感参数具有可实现的有意义的成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Risk-sensitive optimal control for stochastic recurrent neural networks
As a continuation of our study, this paper extends our research results of optimality-oriented control from deterministic recurrent neural networks to stochastic recurrent neural networks, and presents a new theoretical design for the risk-sensitive optimal control of stochastic recurrent neural networks. The design procedure follows the technique of inverse optimality, and obtains risk-sensitive state feedback controllers that guarantee an achievable meaningful cost for a given risk-sensitivity parameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信