为提高全量化神经网络加速器的精度设计高效快捷体系结构

Baoting Li, Longjun Liu, Yan-ming Jin, Peng Gao, Hongbin Sun, Nanning Zheng
{"title":"为提高全量化神经网络加速器的精度设计高效快捷体系结构","authors":"Baoting Li, Longjun Liu, Yan-ming Jin, Peng Gao, Hongbin Sun, Nanning Zheng","doi":"10.1109/ASP-DAC47756.2020.9045739","DOIUrl":null,"url":null,"abstract":"Network quantization is an effective solution to compress Deep Neural Networks (DNN) that can be accelerated with custom circuit. However, existing quantization methods suffer from significant loss in accuracy. In this paper, we propose an efficient shortcut architecture to enhance the representational capability of DNN between different convolution layers. We further implement the shortcut hardware architecture to effectively improve the accuracy of fully quantized neural networks accelerator. The experimental results show that our shortcut architecture can obviously improve network accuracy while increasing very few hardware resources $( 0.11 \\times$ and $0.17 \\times$ for LUT and FF respectively) compared with the whole accelerator.","PeriodicalId":125112,"journal":{"name":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing Efficient Shortcut Architecture for Improving the Accuracy of Fully Quantized Neural Networks Accelerator\",\"authors\":\"Baoting Li, Longjun Liu, Yan-ming Jin, Peng Gao, Hongbin Sun, Nanning Zheng\",\"doi\":\"10.1109/ASP-DAC47756.2020.9045739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network quantization is an effective solution to compress Deep Neural Networks (DNN) that can be accelerated with custom circuit. However, existing quantization methods suffer from significant loss in accuracy. In this paper, we propose an efficient shortcut architecture to enhance the representational capability of DNN between different convolution layers. We further implement the shortcut hardware architecture to effectively improve the accuracy of fully quantized neural networks accelerator. The experimental results show that our shortcut architecture can obviously improve network accuracy while increasing very few hardware resources $( 0.11 \\\\times$ and $0.17 \\\\times$ for LUT and FF respectively) compared with the whole accelerator.\",\"PeriodicalId\":125112,\"journal\":{\"name\":\"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASP-DAC47756.2020.9045739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASP-DAC47756.2020.9045739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

网络量化是压缩深度神经网络(DNN)的有效解决方案,可以通过定制电路进行加速。然而,现有的量化方法在精度上存在较大的损失。为了提高深度神经网络在不同卷积层之间的表示能力,本文提出了一种高效的快捷结构。进一步实现了快捷硬件架构,有效提高了全量化神经网络加速器的精度。实验结果表明,与整个加速器相比,我们的快捷架构可以明显提高网络精度,同时只增加很少的硬件资源(LUT和FF分别为0.11倍和0.17倍)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing Efficient Shortcut Architecture for Improving the Accuracy of Fully Quantized Neural Networks Accelerator
Network quantization is an effective solution to compress Deep Neural Networks (DNN) that can be accelerated with custom circuit. However, existing quantization methods suffer from significant loss in accuracy. In this paper, we propose an efficient shortcut architecture to enhance the representational capability of DNN between different convolution layers. We further implement the shortcut hardware architecture to effectively improve the accuracy of fully quantized neural networks accelerator. The experimental results show that our shortcut architecture can obviously improve network accuracy while increasing very few hardware resources $( 0.11 \times$ and $0.17 \times$ for LUT and FF respectively) compared with the whole accelerator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信