A. Bandala, A. M. Lim, Mark Anthony D. Cai, Allan Jeffrey C. Bacar, Aynna Claudine G. Manosca
{"title":"婴儿哭声识别的人工神经网络的建模和表征使用mel频率倒谱系数","authors":"A. Bandala, A. M. Lim, Mark Anthony D. Cai, Allan Jeffrey C. Bacar, Aynna Claudine G. Manosca","doi":"10.1109/TENCON.2014.7022407","DOIUrl":null,"url":null,"abstract":"This paper is about the creation of an artificial neural network (ANN) in MATLAB to analyze the features extracted from calculating the mel-frequency cepstral coefficients (MFCC) of the raw audio data. The paper explains basic concepts about the ANN, as well as the MFCC and other relevant theories. Regarding the design of the ANN, it uses multiple infant crying sounds, as well as non-crying sounds, to create a sample training set with a corresponding target that determines whether the sound is a cry or not. The paper uses relevant concepts heavily utilized in speech recognition for the design of the infant cry recognition, modifies them, and adds a few more calculations to fit the desired application to compensate for the differences present in a cry from human speech.","PeriodicalId":292057,"journal":{"name":"TENCON 2014 - 2014 IEEE Region 10 Conference","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling and characterization of an artificial neural network for infant cry recognition using mel-frequency cepstral coefficients\",\"authors\":\"A. Bandala, A. M. Lim, Mark Anthony D. Cai, Allan Jeffrey C. Bacar, Aynna Claudine G. Manosca\",\"doi\":\"10.1109/TENCON.2014.7022407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is about the creation of an artificial neural network (ANN) in MATLAB to analyze the features extracted from calculating the mel-frequency cepstral coefficients (MFCC) of the raw audio data. The paper explains basic concepts about the ANN, as well as the MFCC and other relevant theories. Regarding the design of the ANN, it uses multiple infant crying sounds, as well as non-crying sounds, to create a sample training set with a corresponding target that determines whether the sound is a cry or not. The paper uses relevant concepts heavily utilized in speech recognition for the design of the infant cry recognition, modifies them, and adds a few more calculations to fit the desired application to compensate for the differences present in a cry from human speech.\",\"PeriodicalId\":292057,\"journal\":{\"name\":\"TENCON 2014 - 2014 IEEE Region 10 Conference\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TENCON 2014 - 2014 IEEE Region 10 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.2014.7022407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2014 - 2014 IEEE Region 10 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2014.7022407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modelling and characterization of an artificial neural network for infant cry recognition using mel-frequency cepstral coefficients
This paper is about the creation of an artificial neural network (ANN) in MATLAB to analyze the features extracted from calculating the mel-frequency cepstral coefficients (MFCC) of the raw audio data. The paper explains basic concepts about the ANN, as well as the MFCC and other relevant theories. Regarding the design of the ANN, it uses multiple infant crying sounds, as well as non-crying sounds, to create a sample training set with a corresponding target that determines whether the sound is a cry or not. The paper uses relevant concepts heavily utilized in speech recognition for the design of the infant cry recognition, modifies them, and adds a few more calculations to fit the desired application to compensate for the differences present in a cry from human speech.