Filip Majer, Zhi Yan, G. Broughton, Y. Ruichek, T. Krajník
{"title":"学习透视雾霾:基于雷达的恶劣天气条件下的人类探测","authors":"Filip Majer, Zhi Yan, G. Broughton, Y. Ruichek, T. Krajník","doi":"10.1109/ECMR.2019.8870954","DOIUrl":null,"url":null,"abstract":"In this paper, we present a lifelong-learning multisensor system for pedestrian detection in adverse weather conditions. The proposed method combines two people detection pipelines which process data provided by a lidar and an ultrawideband radar. The outputs of these pipelines are combined not only by means of adaptive sensor fusion, but they can also be used to help one another learn. In particular, the lidar-based detector provides labels to the incoming radar data, efficiently training the radar data classifier. In several experiments, we show that the proposed learning-fusion not only results in a gradual improvement of the system performance during routine operation, but also efficiently deals with lidar detection failures caused by thick fog conditions.","PeriodicalId":435630,"journal":{"name":"2019 European Conference on Mobile Robots (ECMR)","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Learning to see through haze: Radar-based Human Detection for Adverse Weather Conditions\",\"authors\":\"Filip Majer, Zhi Yan, G. Broughton, Y. Ruichek, T. Krajník\",\"doi\":\"10.1109/ECMR.2019.8870954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a lifelong-learning multisensor system for pedestrian detection in adverse weather conditions. The proposed method combines two people detection pipelines which process data provided by a lidar and an ultrawideband radar. The outputs of these pipelines are combined not only by means of adaptive sensor fusion, but they can also be used to help one another learn. In particular, the lidar-based detector provides labels to the incoming radar data, efficiently training the radar data classifier. In several experiments, we show that the proposed learning-fusion not only results in a gradual improvement of the system performance during routine operation, but also efficiently deals with lidar detection failures caused by thick fog conditions.\",\"PeriodicalId\":435630,\"journal\":{\"name\":\"2019 European Conference on Mobile Robots (ECMR)\",\"volume\":\"146 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 European Conference on Mobile Robots (ECMR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECMR.2019.8870954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 European Conference on Mobile Robots (ECMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECMR.2019.8870954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning to see through haze: Radar-based Human Detection for Adverse Weather Conditions
In this paper, we present a lifelong-learning multisensor system for pedestrian detection in adverse weather conditions. The proposed method combines two people detection pipelines which process data provided by a lidar and an ultrawideband radar. The outputs of these pipelines are combined not only by means of adaptive sensor fusion, but they can also be used to help one another learn. In particular, the lidar-based detector provides labels to the incoming radar data, efficiently training the radar data classifier. In several experiments, we show that the proposed learning-fusion not only results in a gradual improvement of the system performance during routine operation, but also efficiently deals with lidar detection failures caused by thick fog conditions.