从控制密集型顺序程序中自动生成大规模并行硬件

Michael F. Dossis
{"title":"从控制密集型顺序程序中自动生成大规模并行硬件","authors":"Michael F. Dossis","doi":"10.1109/ISVLSI.2010.40","DOIUrl":null,"url":null,"abstract":"High-level synthesis has been envisaged as a suitable methodology to design and deliver on time, at least large parts of today’s complex IC systems. This paper describes a unified and integrated HLS framework, to automatically produce custom and massively-parallel hardware, including its memory and system interfaces from high-level sequential program code. Using compiler-generators and logic programming techniques, provably-correct hardware compilation flow is achieved. The utilized hardware optimization inference engine is driven by a set of resource constraints, which limit to a certain boundary the number of available hardware operators to function in parallel during each control step. This optimization reduces drastically the number of different control steps (states) of the implemented application. The hardware compilation runs are completed in orders-of-magnitude less time than that which would be needed by even very experienced HDL designers to implement the same applications in RTL code. Implementation results from synthesis of a number of control-dominated, linear and repetitive, applications including a MPEG video compression engine with up to a few hundred states, are presented. In all cases the HLS framework delivers quickly provably-correct, implementable RTL code and the optimized schedule is reduced at up to 30% in comparison with the initial schedule.","PeriodicalId":187530,"journal":{"name":"2010 IEEE Computer Society Annual Symposium on VLSI","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automatic Generation of Massively Parallel Hardware from Control-Intensive Sequential Programs\",\"authors\":\"Michael F. Dossis\",\"doi\":\"10.1109/ISVLSI.2010.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-level synthesis has been envisaged as a suitable methodology to design and deliver on time, at least large parts of today’s complex IC systems. This paper describes a unified and integrated HLS framework, to automatically produce custom and massively-parallel hardware, including its memory and system interfaces from high-level sequential program code. Using compiler-generators and logic programming techniques, provably-correct hardware compilation flow is achieved. The utilized hardware optimization inference engine is driven by a set of resource constraints, which limit to a certain boundary the number of available hardware operators to function in parallel during each control step. This optimization reduces drastically the number of different control steps (states) of the implemented application. The hardware compilation runs are completed in orders-of-magnitude less time than that which would be needed by even very experienced HDL designers to implement the same applications in RTL code. Implementation results from synthesis of a number of control-dominated, linear and repetitive, applications including a MPEG video compression engine with up to a few hundred states, are presented. In all cases the HLS framework delivers quickly provably-correct, implementable RTL code and the optimized schedule is reduced at up to 30% in comparison with the initial schedule.\",\"PeriodicalId\":187530,\"journal\":{\"name\":\"2010 IEEE Computer Society Annual Symposium on VLSI\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Computer Society Annual Symposium on VLSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVLSI.2010.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Computer Society Annual Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2010.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

高级综合已被设想为一种合适的方法,至少在当今复杂的集成电路系统的大部分中,可以按时设计和交付。本文描述了一个统一集成的HLS框架,用于从高级顺序程序代码中自动生成定制的大规模并行硬件,包括其内存和系统接口。使用编译器生成器和逻辑编程技术,实现了可证明正确的硬件编译流程。所使用的硬件优化推理引擎由一组资源约束驱动,这些约束将每个控制步骤中并行运行的可用硬件操作符的数量限制在一定范围内。这种优化大大减少了实现的应用程序的不同控制步骤(状态)的数量。硬件编译运行的时间比非常有经验的HDL设计人员用RTL代码实现相同的应用程序所需的时间要少得多。介绍了通过综合许多控制主导的、线性的和重复的应用程序的实现结果,包括具有多达几百个状态的MPEG视频压缩引擎。在所有情况下,HLS框架都能快速交付可证明正确的、可实现的RTL代码,与初始时间表相比,优化后的时间表最多减少了30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Generation of Massively Parallel Hardware from Control-Intensive Sequential Programs
High-level synthesis has been envisaged as a suitable methodology to design and deliver on time, at least large parts of today’s complex IC systems. This paper describes a unified and integrated HLS framework, to automatically produce custom and massively-parallel hardware, including its memory and system interfaces from high-level sequential program code. Using compiler-generators and logic programming techniques, provably-correct hardware compilation flow is achieved. The utilized hardware optimization inference engine is driven by a set of resource constraints, which limit to a certain boundary the number of available hardware operators to function in parallel during each control step. This optimization reduces drastically the number of different control steps (states) of the implemented application. The hardware compilation runs are completed in orders-of-magnitude less time than that which would be needed by even very experienced HDL designers to implement the same applications in RTL code. Implementation results from synthesis of a number of control-dominated, linear and repetitive, applications including a MPEG video compression engine with up to a few hundred states, are presented. In all cases the HLS framework delivers quickly provably-correct, implementable RTL code and the optimized schedule is reduced at up to 30% in comparison with the initial schedule.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信