{"title":"稳定性阈值和丢番图近似","authors":"Y. He, M. Ru","doi":"10.1090/bproc/64","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to use the filtration that appeared in Ru and Vojta [Amer. J. Math. 142 (2020), pp. 957-991] to extend the result of Blum-Jonsson [Adv. Math. 365 (2020), p. 57], as well as to explore some connections between the notion of the \n\n \n K\n K\n \n\n-stability and Diophantine approximation, especially the \n\n \n β\n \\beta\n \n\n-constant and the Ru-Vojta’s theorem.","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The stability threshold and Diophantine approximation\",\"authors\":\"Y. He, M. Ru\",\"doi\":\"10.1090/bproc/64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to use the filtration that appeared in Ru and Vojta [Amer. J. Math. 142 (2020), pp. 957-991] to extend the result of Blum-Jonsson [Adv. Math. 365 (2020), p. 57], as well as to explore some connections between the notion of the \\n\\n \\n K\\n K\\n \\n\\n-stability and Diophantine approximation, especially the \\n\\n \\n β\\n \\\\beta\\n \\n\\n-constant and the Ru-Vojta’s theorem.\",\"PeriodicalId\":106316,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society, Series B\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/bproc/64\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
本文的目的是利用在Ru和Vojta [Amer中出现的过滤。[J. Math. 142 (2020), pp. 957-991]扩展Blum-Jonsson的结果[ad . Math. 365 (2020), p. 57],以及探索K - K -稳定性概念和丢ophhantine近似之间的一些联系,特别是β \ β -常数和Ru-Vojta定理。
The stability threshold and Diophantine approximation
The purpose of this paper is to use the filtration that appeared in Ru and Vojta [Amer. J. Math. 142 (2020), pp. 957-991] to extend the result of Blum-Jonsson [Adv. Math. 365 (2020), p. 57], as well as to explore some connections between the notion of the
K
K
-stability and Diophantine approximation, especially the
β
\beta
-constant and the Ru-Vojta’s theorem.