掌指关节单片假体增加外展/内收活动的设计

Nathaniel Millard, Raymond K. Yee
{"title":"掌指关节单片假体增加外展/内收活动的设计","authors":"Nathaniel Millard, Raymond K. Yee","doi":"10.1115/imece2019-11005","DOIUrl":null,"url":null,"abstract":"\n One of the leading causes of disability is rheumatoid arthritis (RA), especially that of the hand, the metacarpophalangeal (MCP) joint being affected the most. Current single piece prostheses are designed to allow for motion in flexion and extension, but little effort is put towards motion in abduction and adduction. The objective of this study is to determine the effects of web (hinge) joint cross-sectional geometry on stress, strain, shear strain, strain energy, and reaction moment magnitude for an MCP joint that is subject to not only flexion and extension but also abduction and adduction. Using finger bone dimensions from the literature, geometry was produced in ANSYS finite element software. The geometry was assigned a hyperelastic material constitutive model, making the analysis nonlinear. The cross-sectional shape of the hinge was controlled by ellipse dimensions, one for thickness and one for width. Motion boundary conditions were applied to the distal portion of the model resulting in bending at the hinge. The study showed that for flexion/extension motion the von Mises (equivalent) stress, shear strain, and equivalent strain are linearly proportional to the thickness but inversely proportional to the width. The reaction moment and strain energy are linearly proportional to the thickness but exponentially proportional to the width. For motion in abduction and adduction the behavior is opposite; the width acting as the thickness does in flexion/extension motion and the thickness acting as the width does in flexion/extension motion. It was also seen that high levels of shear strain develop on the palmer side of the model, indicating that failure has the most potential to occur in that area.","PeriodicalId":332737,"journal":{"name":"Volume 3: Biomedical and Biotechnology Engineering","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Metacarpophalangeal Single-Piece Joint Prosthesis to Increase Motion in Abduction/Adduction\",\"authors\":\"Nathaniel Millard, Raymond K. Yee\",\"doi\":\"10.1115/imece2019-11005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n One of the leading causes of disability is rheumatoid arthritis (RA), especially that of the hand, the metacarpophalangeal (MCP) joint being affected the most. Current single piece prostheses are designed to allow for motion in flexion and extension, but little effort is put towards motion in abduction and adduction. The objective of this study is to determine the effects of web (hinge) joint cross-sectional geometry on stress, strain, shear strain, strain energy, and reaction moment magnitude for an MCP joint that is subject to not only flexion and extension but also abduction and adduction. Using finger bone dimensions from the literature, geometry was produced in ANSYS finite element software. The geometry was assigned a hyperelastic material constitutive model, making the analysis nonlinear. The cross-sectional shape of the hinge was controlled by ellipse dimensions, one for thickness and one for width. Motion boundary conditions were applied to the distal portion of the model resulting in bending at the hinge. The study showed that for flexion/extension motion the von Mises (equivalent) stress, shear strain, and equivalent strain are linearly proportional to the thickness but inversely proportional to the width. The reaction moment and strain energy are linearly proportional to the thickness but exponentially proportional to the width. For motion in abduction and adduction the behavior is opposite; the width acting as the thickness does in flexion/extension motion and the thickness acting as the width does in flexion/extension motion. It was also seen that high levels of shear strain develop on the palmer side of the model, indicating that failure has the most potential to occur in that area.\",\"PeriodicalId\":332737,\"journal\":{\"name\":\"Volume 3: Biomedical and Biotechnology Engineering\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3: Biomedical and Biotechnology Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2019-11005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Biomedical and Biotechnology Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2019-11005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

致残的主要原因之一是类风湿关节炎(RA),特别是手,掌指关节(MCP)受影响最大。目前的单片假体设计允许屈曲和伸展运动,但很少努力在外展和内收运动。本研究的目的是确定腹板(铰链)关节横截面几何形状对MCP关节的应力、应变、剪切应变、应变能和反应力矩大小的影响,MCP关节不仅受屈曲和伸展影响,还受外展和内收影响。利用文献中获知的指骨尺寸,在ANSYS有限元软件中生成几何图形。几何结构采用超弹性材料本构模型,使分析非线性化。铰链的横截面形状由两个椭圆尺寸控制,一个为厚度,一个为宽度。将运动边界条件应用于模型的远端部分,导致铰链处弯曲。研究表明,对于弯曲/伸展运动,von Mises(等效)应力、剪切应变和等效应变与厚度成线性关系,与宽度成反比。反应矩和应变能与厚度成线性关系,而与宽度成指数关系。外展和内收运动则相反;宽度在弯曲/伸展运动中与厚度相同,厚度在弯曲/伸展运动中与宽度相同。还可以看到,高水平的剪切应变在模型的palmer一侧发展,表明该区域最有可能发生破坏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of Metacarpophalangeal Single-Piece Joint Prosthesis to Increase Motion in Abduction/Adduction
One of the leading causes of disability is rheumatoid arthritis (RA), especially that of the hand, the metacarpophalangeal (MCP) joint being affected the most. Current single piece prostheses are designed to allow for motion in flexion and extension, but little effort is put towards motion in abduction and adduction. The objective of this study is to determine the effects of web (hinge) joint cross-sectional geometry on stress, strain, shear strain, strain energy, and reaction moment magnitude for an MCP joint that is subject to not only flexion and extension but also abduction and adduction. Using finger bone dimensions from the literature, geometry was produced in ANSYS finite element software. The geometry was assigned a hyperelastic material constitutive model, making the analysis nonlinear. The cross-sectional shape of the hinge was controlled by ellipse dimensions, one for thickness and one for width. Motion boundary conditions were applied to the distal portion of the model resulting in bending at the hinge. The study showed that for flexion/extension motion the von Mises (equivalent) stress, shear strain, and equivalent strain are linearly proportional to the thickness but inversely proportional to the width. The reaction moment and strain energy are linearly proportional to the thickness but exponentially proportional to the width. For motion in abduction and adduction the behavior is opposite; the width acting as the thickness does in flexion/extension motion and the thickness acting as the width does in flexion/extension motion. It was also seen that high levels of shear strain develop on the palmer side of the model, indicating that failure has the most potential to occur in that area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信