利用导纳-壁边界条件,扩展了时域轮廓积分法的有效性

M. Štumpf
{"title":"利用导纳-壁边界条件,扩展了时域轮廓积分法的有效性","authors":"M. Štumpf","doi":"10.1109/ISEMC.2017.8077967","DOIUrl":null,"url":null,"abstract":"The admittance-wall boundary condition is incorporated in the time-domain contour integral method. It is shown that the inclusion of the radiating wall amounts to adding a single matrix in the resulting marching-on-in-time scheme. An illustrative numerical example demonstrates that even a simple instantaneously-reacting uniform edge admittance may improve the validity of results with respect to the standard formulation based on the (closed) cavity model.","PeriodicalId":426924,"journal":{"name":"2017 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Extending the validity of the time-domain contour integral method using the admittance-wall boundary condition\",\"authors\":\"M. Štumpf\",\"doi\":\"10.1109/ISEMC.2017.8077967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The admittance-wall boundary condition is incorporated in the time-domain contour integral method. It is shown that the inclusion of the radiating wall amounts to adding a single matrix in the resulting marching-on-in-time scheme. An illustrative numerical example demonstrates that even a simple instantaneously-reacting uniform edge admittance may improve the validity of results with respect to the standard formulation based on the (closed) cavity model.\",\"PeriodicalId\":426924,\"journal\":{\"name\":\"2017 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISEMC.2017.8077967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEMC.2017.8077967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在时域轮廓积分法中引入了导纳-壁边界条件。计算结果表明,辐射壁的加入相当于在实时行进方案中增加了一个矩阵。一个数值例子表明,即使是一个简单的瞬时反应均匀边缘导纳也可以提高基于(封闭)腔模型的标准公式的结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extending the validity of the time-domain contour integral method using the admittance-wall boundary condition
The admittance-wall boundary condition is incorporated in the time-domain contour integral method. It is shown that the inclusion of the radiating wall amounts to adding a single matrix in the resulting marching-on-in-time scheme. An illustrative numerical example demonstrates that even a simple instantaneously-reacting uniform edge admittance may improve the validity of results with respect to the standard formulation based on the (closed) cavity model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信