基于属性操作的人脸隐私保护

Jing Wang, Jun Wang, Jianhou Gan, Juxiang Zhou
{"title":"基于属性操作的人脸隐私保护","authors":"Jing Wang, Jun Wang, Jianhou Gan, Juxiang Zhou","doi":"10.1145/3512576.3512609","DOIUrl":null,"url":null,"abstract":"Recent studies have shown the possibility of inferring soft biometric attributes from individual facial images, such as age, gender, and race. This has aroused people's concern about privacy. To solve this problem, we designed a generation confrontation network to achieve the purpose of privacy protection by confusing or preserving the soft biometrics of face images and preserving the identity matching function of the original face. Our method can complete the conversion between multiple facial attributes by using only one generation model. Users can flexibly select the retention or modification of facial attributes without affecting the accuracy of identity matching. A large number of experiments show the effectiveness of our method.","PeriodicalId":278114,"journal":{"name":"Proceedings of the 2021 9th International Conference on Information Technology: IoT and Smart City","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Face Privacy Protection Based on Attribute Manipulation\",\"authors\":\"Jing Wang, Jun Wang, Jianhou Gan, Juxiang Zhou\",\"doi\":\"10.1145/3512576.3512609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent studies have shown the possibility of inferring soft biometric attributes from individual facial images, such as age, gender, and race. This has aroused people's concern about privacy. To solve this problem, we designed a generation confrontation network to achieve the purpose of privacy protection by confusing or preserving the soft biometrics of face images and preserving the identity matching function of the original face. Our method can complete the conversion between multiple facial attributes by using only one generation model. Users can flexibly select the retention or modification of facial attributes without affecting the accuracy of identity matching. A large number of experiments show the effectiveness of our method.\",\"PeriodicalId\":278114,\"journal\":{\"name\":\"Proceedings of the 2021 9th International Conference on Information Technology: IoT and Smart City\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 9th International Conference on Information Technology: IoT and Smart City\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3512576.3512609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 9th International Conference on Information Technology: IoT and Smart City","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3512576.3512609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最近的研究表明,可以从个人面部图像中推断出软生物特征属性,如年龄、性别和种族。这引起了人们对隐私的关注。为了解决这一问题,我们设计了一种生成对抗网络,通过混淆或保留人脸图像的软生物特征,同时保留原始人脸的身份匹配功能,达到隐私保护的目的。该方法只需使用一个生成模型即可完成多个人脸属性之间的转换。用户可以在不影响身份匹配准确性的前提下,灵活选择保留或修改面部属性。大量的实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face Privacy Protection Based on Attribute Manipulation
Recent studies have shown the possibility of inferring soft biometric attributes from individual facial images, such as age, gender, and race. This has aroused people's concern about privacy. To solve this problem, we designed a generation confrontation network to achieve the purpose of privacy protection by confusing or preserving the soft biometrics of face images and preserving the identity matching function of the original face. Our method can complete the conversion between multiple facial attributes by using only one generation model. Users can flexibly select the retention or modification of facial attributes without affecting the accuracy of identity matching. A large number of experiments show the effectiveness of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信