Q. Evrard, N. Sadegh, C. Hsu, N. Mahne, A. Giglia, S. Nannarone, Y. Ekinci, M. Vockenhuber, A. Nishimura, T. Goya, T. Sugioka, A. Brouwer
{"title":"阴离子对锡基EUV光刻胶性能的影响","authors":"Q. Evrard, N. Sadegh, C. Hsu, N. Mahne, A. Giglia, S. Nannarone, Y. Ekinci, M. Vockenhuber, A. Nishimura, T. Goya, T. Sugioka, A. Brouwer","doi":"10.1117/12.2658498","DOIUrl":null,"url":null,"abstract":"In this work we assess the effect of the change of counter-anions on the photolithography properties of butyl-Sn12 oxo hydroxo cages. The hydroxide anions were exchanged with tetrakis(pentafluorophenyl)borate (B(PFP)4)- and (phenyl) trifluoroborate (BF3Ph)- anions which exhibit a photoabsorption cross section at 92 eV that is similar to that of the butyl-Sn12 oxo hydroxo cages. The degradation of the EUV photoresist was monitored via in-situ EUV exposure followed by X-ray photoelectron spectroscopy (XPS) at the BEAR beamline (Elettra, Italy) at the C1s-edge. Both systems exhibit similar carbon losses of around 25% for 100 mJ/cm2 dose. The Sn12 cluster with acetate anions, as a reference compound, exhibit a loss of C1s XPS signal from the butyl chains of around 23% for the same 100 mJ/cm2 EUV exposure dose indicating a larger degradation of the Sn12 cluster for the latter. We also evaluated the patterning performance of the Sn12(B(PFP)4) resist via interference lithography at the XIL-II beamline (PSI, Switzerland) and found the positive tone character of the resist and its ability to write lines with 50 nm half pitch resolution for doses of 30 mJ/cm2. In contrast, Sn12(BF3Ph) acts as a sensitive negative tone resist, with doses of 12.5 mJ/cm2 sufficient to write 50 nm half pitch lines.","PeriodicalId":212235,"journal":{"name":"Advanced Lithography","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of the anion in tin-based EUV photoresists properties\",\"authors\":\"Q. Evrard, N. Sadegh, C. Hsu, N. Mahne, A. Giglia, S. Nannarone, Y. Ekinci, M. Vockenhuber, A. Nishimura, T. Goya, T. Sugioka, A. Brouwer\",\"doi\":\"10.1117/12.2658498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we assess the effect of the change of counter-anions on the photolithography properties of butyl-Sn12 oxo hydroxo cages. The hydroxide anions were exchanged with tetrakis(pentafluorophenyl)borate (B(PFP)4)- and (phenyl) trifluoroborate (BF3Ph)- anions which exhibit a photoabsorption cross section at 92 eV that is similar to that of the butyl-Sn12 oxo hydroxo cages. The degradation of the EUV photoresist was monitored via in-situ EUV exposure followed by X-ray photoelectron spectroscopy (XPS) at the BEAR beamline (Elettra, Italy) at the C1s-edge. Both systems exhibit similar carbon losses of around 25% for 100 mJ/cm2 dose. The Sn12 cluster with acetate anions, as a reference compound, exhibit a loss of C1s XPS signal from the butyl chains of around 23% for the same 100 mJ/cm2 EUV exposure dose indicating a larger degradation of the Sn12 cluster for the latter. We also evaluated the patterning performance of the Sn12(B(PFP)4) resist via interference lithography at the XIL-II beamline (PSI, Switzerland) and found the positive tone character of the resist and its ability to write lines with 50 nm half pitch resolution for doses of 30 mJ/cm2. In contrast, Sn12(BF3Ph) acts as a sensitive negative tone resist, with doses of 12.5 mJ/cm2 sufficient to write 50 nm half pitch lines.\",\"PeriodicalId\":212235,\"journal\":{\"name\":\"Advanced Lithography\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Lithography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2658498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Lithography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2658498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Influence of the anion in tin-based EUV photoresists properties
In this work we assess the effect of the change of counter-anions on the photolithography properties of butyl-Sn12 oxo hydroxo cages. The hydroxide anions were exchanged with tetrakis(pentafluorophenyl)borate (B(PFP)4)- and (phenyl) trifluoroborate (BF3Ph)- anions which exhibit a photoabsorption cross section at 92 eV that is similar to that of the butyl-Sn12 oxo hydroxo cages. The degradation of the EUV photoresist was monitored via in-situ EUV exposure followed by X-ray photoelectron spectroscopy (XPS) at the BEAR beamline (Elettra, Italy) at the C1s-edge. Both systems exhibit similar carbon losses of around 25% for 100 mJ/cm2 dose. The Sn12 cluster with acetate anions, as a reference compound, exhibit a loss of C1s XPS signal from the butyl chains of around 23% for the same 100 mJ/cm2 EUV exposure dose indicating a larger degradation of the Sn12 cluster for the latter. We also evaluated the patterning performance of the Sn12(B(PFP)4) resist via interference lithography at the XIL-II beamline (PSI, Switzerland) and found the positive tone character of the resist and its ability to write lines with 50 nm half pitch resolution for doses of 30 mJ/cm2. In contrast, Sn12(BF3Ph) acts as a sensitive negative tone resist, with doses of 12.5 mJ/cm2 sufficient to write 50 nm half pitch lines.