减轻静电对测量精度的影响

Greg Gumkowski, A. Steinman
{"title":"减轻静电对测量精度的影响","authors":"Greg Gumkowski, A. Steinman","doi":"10.51843/wsproceedings.2014.39","DOIUrl":null,"url":null,"abstract":"Electrostatic charge can have unwanted effects on the accuracy of instruments making precision weighing measurements. This paper will discuss electrostatic phenomena and their interaction with weighing operations. Charge is generated primarily by the contact and separation of dissimilar materials. If one of the materials is a conductor, charge can be quickly removed or even prevented by connecting the material to ground. In most cases, however, at least one of the materials will be an insulator or an isolated conductor. As contact and separation occurs throughout the weighing process, the materials involved are almost certain to be charged. A charged insulator is also capable of inducing charge on nearby isolated conductors. Examples of materials that may be charged include samples, transport media, and parts of weighing equipment or their enclosures. Once generated, the static charge affects both the instruments and the materials being weighed. Electrostatic forces interact directly with the mechanisms of weighing machines, making precise measurements in the microgram range all but impossible. Electrostatic forces of attraction and repulsion affect light weight sample materials, causing unwanted movement and losses during transfers, as well as the movement and clinging of unwanted particles to measurement surfaces. Measurement problems caused by static charge are not limited to weighing applications. Whenever small physical quantities or objects need to be measured, electrostatic forces can cause errors or unwanted movement of the object being measured. This is true for atomic force microscopes, force and mass measurements, and electrochemical measurements. Mitigation methods for static charge are well known in the electronics industry, as it is imperative to protect sensitive integrated circuits from the effects of static charge, both during manufacture and use. Grounding of conductive materials, replacing insulators with dissipative materials, and air ionization are the primary static control methods. Air ionization is of particular importance in weighing operations as equipment parts, samples or transport media are often insulators or isolated conductors. This paper discusses how static control may be applied in precision weighing operations, both in the equipment and in sample transport, to remove static charge and improve the accuracy and repeatability of measurements.","PeriodicalId":446344,"journal":{"name":"NCSL International Workshop & Symposium Conference Proceedings 2014","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigating Electrostatic Effects on Measurement Accuracy\",\"authors\":\"Greg Gumkowski, A. Steinman\",\"doi\":\"10.51843/wsproceedings.2014.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrostatic charge can have unwanted effects on the accuracy of instruments making precision weighing measurements. This paper will discuss electrostatic phenomena and their interaction with weighing operations. Charge is generated primarily by the contact and separation of dissimilar materials. If one of the materials is a conductor, charge can be quickly removed or even prevented by connecting the material to ground. In most cases, however, at least one of the materials will be an insulator or an isolated conductor. As contact and separation occurs throughout the weighing process, the materials involved are almost certain to be charged. A charged insulator is also capable of inducing charge on nearby isolated conductors. Examples of materials that may be charged include samples, transport media, and parts of weighing equipment or their enclosures. Once generated, the static charge affects both the instruments and the materials being weighed. Electrostatic forces interact directly with the mechanisms of weighing machines, making precise measurements in the microgram range all but impossible. Electrostatic forces of attraction and repulsion affect light weight sample materials, causing unwanted movement and losses during transfers, as well as the movement and clinging of unwanted particles to measurement surfaces. Measurement problems caused by static charge are not limited to weighing applications. Whenever small physical quantities or objects need to be measured, electrostatic forces can cause errors or unwanted movement of the object being measured. This is true for atomic force microscopes, force and mass measurements, and electrochemical measurements. Mitigation methods for static charge are well known in the electronics industry, as it is imperative to protect sensitive integrated circuits from the effects of static charge, both during manufacture and use. Grounding of conductive materials, replacing insulators with dissipative materials, and air ionization are the primary static control methods. Air ionization is of particular importance in weighing operations as equipment parts, samples or transport media are often insulators or isolated conductors. This paper discusses how static control may be applied in precision weighing operations, both in the equipment and in sample transport, to remove static charge and improve the accuracy and repeatability of measurements.\",\"PeriodicalId\":446344,\"journal\":{\"name\":\"NCSL International Workshop & Symposium Conference Proceedings 2014\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NCSL International Workshop & Symposium Conference Proceedings 2014\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51843/wsproceedings.2014.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NCSL International Workshop & Symposium Conference Proceedings 2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51843/wsproceedings.2014.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

静电荷会对精密称重测量仪器的准确性产生不良影响。本文将讨论静电现象及其与称重操作的相互作用。电荷主要是由不同材料的接触和分离产生的。如果其中一种材料是导体,通过将该材料与地连接,可以迅速除去甚至防止电荷。然而,在大多数情况下,至少有一种材料是绝缘体或隔离导体。由于接触和分离发生在整个称重过程中,所涉及的材料几乎肯定是带电的。带电的绝缘体也能在附近孤立的导体上感应电荷。可能带电的材料包括样品、运输介质和称重设备的部件或其外壳。静电荷一旦产生,就会影响仪器和被称重的材料。静电力直接与称重机的机制相互作用,使得在微克范围内的精确测量几乎是不可能的。静电力的吸引力和排斥力影响轻质样品材料,在转移过程中引起不必要的运动和损失,以及不需要的颗粒在测量表面上的运动和附着。由静电荷引起的测量问题不仅限于称重应用。当需要测量小物理量或物体时,静电力会导致被测量物体的误差或不必要的运动。原子力显微镜、力和质量测量以及电化学测量都是如此。减缓静电的方法在电子工业中是众所周知的,因为在制造和使用过程中,必须保护敏感的集成电路免受静电的影响。导电材料接地、以耗散材料代替绝缘子、空气电离是主要的静电控制方法。空气电离在称重操作中特别重要,因为设备部件、样品或运输介质通常是绝缘体或隔离导体。本文讨论了如何在精密称重操作中应用静态控制,在设备和样品运输中,以消除静电荷,提高测量的准确性和可重复性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mitigating Electrostatic Effects on Measurement Accuracy
Electrostatic charge can have unwanted effects on the accuracy of instruments making precision weighing measurements. This paper will discuss electrostatic phenomena and their interaction with weighing operations. Charge is generated primarily by the contact and separation of dissimilar materials. If one of the materials is a conductor, charge can be quickly removed or even prevented by connecting the material to ground. In most cases, however, at least one of the materials will be an insulator or an isolated conductor. As contact and separation occurs throughout the weighing process, the materials involved are almost certain to be charged. A charged insulator is also capable of inducing charge on nearby isolated conductors. Examples of materials that may be charged include samples, transport media, and parts of weighing equipment or their enclosures. Once generated, the static charge affects both the instruments and the materials being weighed. Electrostatic forces interact directly with the mechanisms of weighing machines, making precise measurements in the microgram range all but impossible. Electrostatic forces of attraction and repulsion affect light weight sample materials, causing unwanted movement and losses during transfers, as well as the movement and clinging of unwanted particles to measurement surfaces. Measurement problems caused by static charge are not limited to weighing applications. Whenever small physical quantities or objects need to be measured, electrostatic forces can cause errors or unwanted movement of the object being measured. This is true for atomic force microscopes, force and mass measurements, and electrochemical measurements. Mitigation methods for static charge are well known in the electronics industry, as it is imperative to protect sensitive integrated circuits from the effects of static charge, both during manufacture and use. Grounding of conductive materials, replacing insulators with dissipative materials, and air ionization are the primary static control methods. Air ionization is of particular importance in weighing operations as equipment parts, samples or transport media are often insulators or isolated conductors. This paper discusses how static control may be applied in precision weighing operations, both in the equipment and in sample transport, to remove static charge and improve the accuracy and repeatability of measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信