用改进的自组织图减少查加斯病患者的侵入性检查

L. Marmol-Herrera, K. Warwick
{"title":"用改进的自组织图减少查加斯病患者的侵入性检查","authors":"L. Marmol-Herrera, K. Warwick","doi":"10.1109/IEMBS.2001.1020537","DOIUrl":null,"url":null,"abstract":"The applicability of AI methods to the Chagas' disease diagnosis is carried out by the use of Kohonen's self-organizing feature maps. Electrodiagnosis indicators calculated from ECG records are used as features in input vectors to train the network. Cross-validation results are used to modify the maps, providing an outstanding improvement to the interpretation of the resulting output. As a result, the map might be used to reduce the need for invasive explorations in chronic Chagas' disease.","PeriodicalId":386546,"journal":{"name":"2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society","volume":"711 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reduction of invasive tests in Chagasic patients with a modified self-organizing map\",\"authors\":\"L. Marmol-Herrera, K. Warwick\",\"doi\":\"10.1109/IEMBS.2001.1020537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The applicability of AI methods to the Chagas' disease diagnosis is carried out by the use of Kohonen's self-organizing feature maps. Electrodiagnosis indicators calculated from ECG records are used as features in input vectors to train the network. Cross-validation results are used to modify the maps, providing an outstanding improvement to the interpretation of the resulting output. As a result, the map might be used to reduce the need for invasive explorations in chronic Chagas' disease.\",\"PeriodicalId\":386546,\"journal\":{\"name\":\"2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society\",\"volume\":\"711 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMBS.2001.1020537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.2001.1020537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

人工智能方法在恰加斯病诊断中的适用性是通过使用Kohonen的自组织特征图来实现的。从心电记录中计算出的电诊断指标作为输入向量的特征来训练网络。交叉验证结果用于修改地图,为结果输出的解释提供了显著的改进。因此,该地图可用于减少对慢性恰加斯病进行侵入性探索的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduction of invasive tests in Chagasic patients with a modified self-organizing map
The applicability of AI methods to the Chagas' disease diagnosis is carried out by the use of Kohonen's self-organizing feature maps. Electrodiagnosis indicators calculated from ECG records are used as features in input vectors to train the network. Cross-validation results are used to modify the maps, providing an outstanding improvement to the interpretation of the resulting output. As a result, the map might be used to reduce the need for invasive explorations in chronic Chagas' disease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信