基于智能混合模型的用电量预测

M. Terziyska, K. Yotov, E. Hadzhikolev, Zhelyazko Terziyski, S. Hadzhikoleva
{"title":"基于智能混合模型的用电量预测","authors":"M. Terziyska, K. Yotov, E. Hadzhikolev, Zhelyazko Terziyski, S. Hadzhikoleva","doi":"10.1109/SIELA54794.2022.9845722","DOIUrl":null,"url":null,"abstract":"In this paper, an Extreme Learning Distributed Adaptive Neuro-Fuzzy Architecture (ELDANFA) model has been presented. It has been tested with real data for predicting energy consumption at an electrical substation in the South-Central region, near Plovdiv, Bulgaria. The main goal of this hybrid intelligent structure is to reduce the computational burdens of neuro-fuzzy models and to keep prediction error to a minimum. The obtained results prove that the proposed model predicts accurately electricity consumption. It is also suitable for real-time applications due to the reduced number of fuzzy rules and the small number of parameters updated during the learning procedure.","PeriodicalId":150282,"journal":{"name":"2022 22nd International Symposium on Electrical Apparatus and Technologies (SIELA)","volume":"273 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting Electricity Consumption with Intelligent Hybrid Model\",\"authors\":\"M. Terziyska, K. Yotov, E. Hadzhikolev, Zhelyazko Terziyski, S. Hadzhikoleva\",\"doi\":\"10.1109/SIELA54794.2022.9845722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an Extreme Learning Distributed Adaptive Neuro-Fuzzy Architecture (ELDANFA) model has been presented. It has been tested with real data for predicting energy consumption at an electrical substation in the South-Central region, near Plovdiv, Bulgaria. The main goal of this hybrid intelligent structure is to reduce the computational burdens of neuro-fuzzy models and to keep prediction error to a minimum. The obtained results prove that the proposed model predicts accurately electricity consumption. It is also suitable for real-time applications due to the reduced number of fuzzy rules and the small number of parameters updated during the learning procedure.\",\"PeriodicalId\":150282,\"journal\":{\"name\":\"2022 22nd International Symposium on Electrical Apparatus and Technologies (SIELA)\",\"volume\":\"273 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 22nd International Symposium on Electrical Apparatus and Technologies (SIELA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIELA54794.2022.9845722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 22nd International Symposium on Electrical Apparatus and Technologies (SIELA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIELA54794.2022.9845722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种极限学习分布式自适应神经模糊结构(ELDANFA)模型。它已经在保加利亚普罗夫迪夫附近的中南部地区的一个变电站用实际数据进行了测试,用于预测能源消耗。这种混合智能结构的主要目标是减少神经模糊模型的计算负担,并将预测误差保持在最小。结果表明,该模型能够准确地预测电力消耗。由于在学习过程中减少了模糊规则的数量和更新参数的数量,因此它也适合于实时应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting Electricity Consumption with Intelligent Hybrid Model
In this paper, an Extreme Learning Distributed Adaptive Neuro-Fuzzy Architecture (ELDANFA) model has been presented. It has been tested with real data for predicting energy consumption at an electrical substation in the South-Central region, near Plovdiv, Bulgaria. The main goal of this hybrid intelligent structure is to reduce the computational burdens of neuro-fuzzy models and to keep prediction error to a minimum. The obtained results prove that the proposed model predicts accurately electricity consumption. It is also suitable for real-time applications due to the reduced number of fuzzy rules and the small number of parameters updated during the learning procedure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信