Troya Çağıl Köylü, Luíza C. Garaffa, C. Reinbrecht, Mahdi Zahedi, S. Hamdioui, M. Taouil
{"title":"利用PUF变异检测故障注入攻击","authors":"Troya Çağıl Köylü, Luíza C. Garaffa, C. Reinbrecht, Mahdi Zahedi, S. Hamdioui, M. Taouil","doi":"10.1109/ddecs54261.2022.9770154","DOIUrl":null,"url":null,"abstract":"The massive deployment of Internet of Things (IoT) devices makes them vulnerable against physical tampering attacks, such as fault injection. These kind of hardware attacks are very popular as they typically do not require complex equipment or high expertise. Hence, it is important that IoT devices are protected against them. In this work, we present a novel fault injection attack detector with high flexibility and low overhead. Our solution is based on the reuse of a security primitive used in many IoT devices, i.e., ring oscillator (RO) physically unclonable function (PUF). Our results show that we obtain a high detection effectiveness and no false alarms against most popular fault injection attacks based on voltage and clock manipulations.","PeriodicalId":334461,"journal":{"name":"2022 25th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploiting PUF Variation to Detect Fault Injection Attacks\",\"authors\":\"Troya Çağıl Köylü, Luíza C. Garaffa, C. Reinbrecht, Mahdi Zahedi, S. Hamdioui, M. Taouil\",\"doi\":\"10.1109/ddecs54261.2022.9770154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The massive deployment of Internet of Things (IoT) devices makes them vulnerable against physical tampering attacks, such as fault injection. These kind of hardware attacks are very popular as they typically do not require complex equipment or high expertise. Hence, it is important that IoT devices are protected against them. In this work, we present a novel fault injection attack detector with high flexibility and low overhead. Our solution is based on the reuse of a security primitive used in many IoT devices, i.e., ring oscillator (RO) physically unclonable function (PUF). Our results show that we obtain a high detection effectiveness and no false alarms against most popular fault injection attacks based on voltage and clock manipulations.\",\"PeriodicalId\":334461,\"journal\":{\"name\":\"2022 25th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 25th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ddecs54261.2022.9770154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 25th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ddecs54261.2022.9770154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploiting PUF Variation to Detect Fault Injection Attacks
The massive deployment of Internet of Things (IoT) devices makes them vulnerable against physical tampering attacks, such as fault injection. These kind of hardware attacks are very popular as they typically do not require complex equipment or high expertise. Hence, it is important that IoT devices are protected against them. In this work, we present a novel fault injection attack detector with high flexibility and low overhead. Our solution is based on the reuse of a security primitive used in many IoT devices, i.e., ring oscillator (RO) physically unclonable function (PUF). Our results show that we obtain a high detection effectiveness and no false alarms against most popular fault injection attacks based on voltage and clock manipulations.