利用PUF变异检测故障注入攻击

Troya Çağıl Köylü, Luíza C. Garaffa, C. Reinbrecht, Mahdi Zahedi, S. Hamdioui, M. Taouil
{"title":"利用PUF变异检测故障注入攻击","authors":"Troya Çağıl Köylü, Luíza C. Garaffa, C. Reinbrecht, Mahdi Zahedi, S. Hamdioui, M. Taouil","doi":"10.1109/ddecs54261.2022.9770154","DOIUrl":null,"url":null,"abstract":"The massive deployment of Internet of Things (IoT) devices makes them vulnerable against physical tampering attacks, such as fault injection. These kind of hardware attacks are very popular as they typically do not require complex equipment or high expertise. Hence, it is important that IoT devices are protected against them. In this work, we present a novel fault injection attack detector with high flexibility and low overhead. Our solution is based on the reuse of a security primitive used in many IoT devices, i.e., ring oscillator (RO) physically unclonable function (PUF). Our results show that we obtain a high detection effectiveness and no false alarms against most popular fault injection attacks based on voltage and clock manipulations.","PeriodicalId":334461,"journal":{"name":"2022 25th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploiting PUF Variation to Detect Fault Injection Attacks\",\"authors\":\"Troya Çağıl Köylü, Luíza C. Garaffa, C. Reinbrecht, Mahdi Zahedi, S. Hamdioui, M. Taouil\",\"doi\":\"10.1109/ddecs54261.2022.9770154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The massive deployment of Internet of Things (IoT) devices makes them vulnerable against physical tampering attacks, such as fault injection. These kind of hardware attacks are very popular as they typically do not require complex equipment or high expertise. Hence, it is important that IoT devices are protected against them. In this work, we present a novel fault injection attack detector with high flexibility and low overhead. Our solution is based on the reuse of a security primitive used in many IoT devices, i.e., ring oscillator (RO) physically unclonable function (PUF). Our results show that we obtain a high detection effectiveness and no false alarms against most popular fault injection attacks based on voltage and clock manipulations.\",\"PeriodicalId\":334461,\"journal\":{\"name\":\"2022 25th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 25th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ddecs54261.2022.9770154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 25th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ddecs54261.2022.9770154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

物联网(IoT)设备的大规模部署使其容易受到物理篡改攻击,例如故障注入。这种类型的硬件攻击非常流行,因为它们通常不需要复杂的设备或高专业知识。因此,重要的是要保护物联网设备免受它们的侵害。在这项工作中,我们提出了一种新的高灵活性和低开销的故障注入攻击检测器。我们的解决方案基于许多物联网设备中使用的安全原语的重用,即环形振荡器(RO)物理不可克隆功能(PUF)。结果表明,对于基于电压和时钟操作的大多数常见故障注入攻击,我们获得了很高的检测效率和无误报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting PUF Variation to Detect Fault Injection Attacks
The massive deployment of Internet of Things (IoT) devices makes them vulnerable against physical tampering attacks, such as fault injection. These kind of hardware attacks are very popular as they typically do not require complex equipment or high expertise. Hence, it is important that IoT devices are protected against them. In this work, we present a novel fault injection attack detector with high flexibility and low overhead. Our solution is based on the reuse of a security primitive used in many IoT devices, i.e., ring oscillator (RO) physically unclonable function (PUF). Our results show that we obtain a high detection effectiveness and no false alarms against most popular fault injection attacks based on voltage and clock manipulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信