{"title":"双通道扶手型石墨烯纳米带场效应晶体管的性能评价","authors":"Adila Syaidatul Azman, Z. Johari, R. Ismail","doi":"10.1109/SMELEC.2014.6920815","DOIUrl":null,"url":null,"abstract":"Graphene has become a potential successor to silicon in electronic devices. In this paper, the performance of dual-channel armchair graphene nanoribbon field-effect transistor (AGNR FET) is investigated. Both physical and electrical properties of dual-channel AGNR FET are simulated using Atomistic Tool Kit from Quantum Wise. Their band structures and transmission spectra are analyzed. Current-voltage characteristic is then extracted and the performance of single and dual-channel AGNR FETs is compared. From the simulation, it is found that dual-channel AGNR FET exhibits significant improvement in ON current over two fold. Results obtained will give insight in the implementation of dual-channel AGNR FET for performance enhancement in future electronic devices.","PeriodicalId":268203,"journal":{"name":"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance evaluation of dual-channel armchair graphene nanoribbon field-effect transistor\",\"authors\":\"Adila Syaidatul Azman, Z. Johari, R. Ismail\",\"doi\":\"10.1109/SMELEC.2014.6920815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphene has become a potential successor to silicon in electronic devices. In this paper, the performance of dual-channel armchair graphene nanoribbon field-effect transistor (AGNR FET) is investigated. Both physical and electrical properties of dual-channel AGNR FET are simulated using Atomistic Tool Kit from Quantum Wise. Their band structures and transmission spectra are analyzed. Current-voltage characteristic is then extracted and the performance of single and dual-channel AGNR FETs is compared. From the simulation, it is found that dual-channel AGNR FET exhibits significant improvement in ON current over two fold. Results obtained will give insight in the implementation of dual-channel AGNR FET for performance enhancement in future electronic devices.\",\"PeriodicalId\":268203,\"journal\":{\"name\":\"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMELEC.2014.6920815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMELEC.2014.6920815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance evaluation of dual-channel armchair graphene nanoribbon field-effect transistor
Graphene has become a potential successor to silicon in electronic devices. In this paper, the performance of dual-channel armchair graphene nanoribbon field-effect transistor (AGNR FET) is investigated. Both physical and electrical properties of dual-channel AGNR FET are simulated using Atomistic Tool Kit from Quantum Wise. Their band structures and transmission spectra are analyzed. Current-voltage characteristic is then extracted and the performance of single and dual-channel AGNR FETs is compared. From the simulation, it is found that dual-channel AGNR FET exhibits significant improvement in ON current over two fold. Results obtained will give insight in the implementation of dual-channel AGNR FET for performance enhancement in future electronic devices.