使用自适应本地地图的终身映射

Nandan Banerjee, D. Lisin, Jimmy Briggs, Martín Llofriu, Mario E. Munich
{"title":"使用自适应本地地图的终身映射","authors":"Nandan Banerjee, D. Lisin, Jimmy Briggs, Martín Llofriu, Mario E. Munich","doi":"10.1109/ECMR.2019.8870347","DOIUrl":null,"url":null,"abstract":"Occupancy mapping enables a mobile robot to make intelligent planning decisions to accomplish its tasks. Adaptive local maps is an algorithm which represents the occupancy information as a set of overlapping local maps anchored to poses in the robot's trajectory. At any time, a global occupancy map can be rendered from the local maps to be used for path planning. The advantage of this approach is that the occupancy information stays consistent despite the changes in the pose estimates resulting from loop closures and localization updates. The disadvantage, however, is that the number of local maps grows over time. For long robot runs, or for multiple runs in the same space, this growth will result in redundant occupancy information, which will in turn increase the time it takes to render the global map, as well as the memory footprint of the system. In this paper, we propose a novel approach for the maintenance of an adaptive local maps system, which intelligently prunes redundant local maps, ensuring the robustness and stability required for lifelong mapping.","PeriodicalId":435630,"journal":{"name":"2019 European Conference on Mobile Robots (ECMR)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Lifelong Mapping using Adaptive Local Maps\",\"authors\":\"Nandan Banerjee, D. Lisin, Jimmy Briggs, Martín Llofriu, Mario E. Munich\",\"doi\":\"10.1109/ECMR.2019.8870347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Occupancy mapping enables a mobile robot to make intelligent planning decisions to accomplish its tasks. Adaptive local maps is an algorithm which represents the occupancy information as a set of overlapping local maps anchored to poses in the robot's trajectory. At any time, a global occupancy map can be rendered from the local maps to be used for path planning. The advantage of this approach is that the occupancy information stays consistent despite the changes in the pose estimates resulting from loop closures and localization updates. The disadvantage, however, is that the number of local maps grows over time. For long robot runs, or for multiple runs in the same space, this growth will result in redundant occupancy information, which will in turn increase the time it takes to render the global map, as well as the memory footprint of the system. In this paper, we propose a novel approach for the maintenance of an adaptive local maps system, which intelligently prunes redundant local maps, ensuring the robustness and stability required for lifelong mapping.\",\"PeriodicalId\":435630,\"journal\":{\"name\":\"2019 European Conference on Mobile Robots (ECMR)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 European Conference on Mobile Robots (ECMR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECMR.2019.8870347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 European Conference on Mobile Robots (ECMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECMR.2019.8870347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

占用映射使移动机器人能够做出智能规划决策来完成其任务。自适应局部地图是一种算法,它将占用信息表示为一组重叠的局部地图,锚定在机器人的轨迹上。在任何时候,全局占用地图都可以从本地地图中渲染出来,用于路径规划。这种方法的优点是,尽管由于循环关闭和定位更新而导致姿态估计发生变化,但占用信息保持一致。然而,缺点是本地地图的数量会随着时间的推移而增加。对于长时间的机器人运行,或者在同一空间内多次运行,这种增长将导致冗余的占用信息,这将反过来增加呈现全局地图所需的时间,以及系统的内存占用。在本文中,我们提出了一种新的自适应局部地图系统的维护方法,该方法可以智能地修剪冗余的局部地图,以确保终身映射所需的鲁棒性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lifelong Mapping using Adaptive Local Maps
Occupancy mapping enables a mobile robot to make intelligent planning decisions to accomplish its tasks. Adaptive local maps is an algorithm which represents the occupancy information as a set of overlapping local maps anchored to poses in the robot's trajectory. At any time, a global occupancy map can be rendered from the local maps to be used for path planning. The advantage of this approach is that the occupancy information stays consistent despite the changes in the pose estimates resulting from loop closures and localization updates. The disadvantage, however, is that the number of local maps grows over time. For long robot runs, or for multiple runs in the same space, this growth will result in redundant occupancy information, which will in turn increase the time it takes to render the global map, as well as the memory footprint of the system. In this paper, we propose a novel approach for the maintenance of an adaptive local maps system, which intelligently prunes redundant local maps, ensuring the robustness and stability required for lifelong mapping.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信