电荷泵检测器:优化过程和设备模拟

J. Segal, C. Kenney
{"title":"电荷泵检测器:优化过程和设备模拟","authors":"J. Segal, C. Kenney","doi":"10.1109/NSSMIC.2012.6551158","DOIUrl":null,"url":null,"abstract":"The charge pump pixel detector concept was developed to meet the requirements of X-ray correlation spectroscopy. The sensor is built in high-resistivity silicon with front and backside diffused regions and double metal processing on the front side. The design is targeted for low noise of less than 100 e noise, high quantum efficiency for 8KeV photons, 8mS readout for the entire array, and dynamic range of 100 photons. The pixel size is 56μm by 56μm. In the current work, extensive TCAD simulations were used to optimize the device structure, the bias conditions, and the process conditions. 3D simulations under dynamic switching conditions were executed to study charge cloud evolution, charge storage, and readout.","PeriodicalId":187728,"journal":{"name":"2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Charge pump detector: Optimization with process and device simulation\",\"authors\":\"J. Segal, C. Kenney\",\"doi\":\"10.1109/NSSMIC.2012.6551158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The charge pump pixel detector concept was developed to meet the requirements of X-ray correlation spectroscopy. The sensor is built in high-resistivity silicon with front and backside diffused regions and double metal processing on the front side. The design is targeted for low noise of less than 100 e noise, high quantum efficiency for 8KeV photons, 8mS readout for the entire array, and dynamic range of 100 photons. The pixel size is 56μm by 56μm. In the current work, extensive TCAD simulations were used to optimize the device structure, the bias conditions, and the process conditions. 3D simulations under dynamic switching conditions were executed to study charge cloud evolution, charge storage, and readout.\",\"PeriodicalId\":187728,\"journal\":{\"name\":\"2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2012.6551158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2012.6551158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为满足x射线相关光谱学的要求,提出了电荷泵像元探测器的概念。该传感器采用高电阻硅材料,前后均有扩散区,正面采用双金属加工。该设计的目标是低噪声小于100e噪声,8KeV光子的高量子效率,整个阵列的8mS读出,100光子的动态范围。像素尺寸为56μm × 56μm。在目前的工作中,广泛的TCAD模拟用于优化器件结构,偏置条件和工艺条件。在动态开关条件下进行三维仿真,研究电荷云演化、电荷存储和读出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Charge pump detector: Optimization with process and device simulation
The charge pump pixel detector concept was developed to meet the requirements of X-ray correlation spectroscopy. The sensor is built in high-resistivity silicon with front and backside diffused regions and double metal processing on the front side. The design is targeted for low noise of less than 100 e noise, high quantum efficiency for 8KeV photons, 8mS readout for the entire array, and dynamic range of 100 photons. The pixel size is 56μm by 56μm. In the current work, extensive TCAD simulations were used to optimize the device structure, the bias conditions, and the process conditions. 3D simulations under dynamic switching conditions were executed to study charge cloud evolution, charge storage, and readout.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信