Thomas Rier, S. Srinivasan, M. Soroush, G. Kalfas, M. Grady, A. Rappe
{"title":"自启动高温聚合反应器宏观机理建模与优化","authors":"Thomas Rier, S. Srinivasan, M. Soroush, G. Kalfas, M. Grady, A. Rappe","doi":"10.1109/ACC.2011.5991445","DOIUrl":null,"url":null,"abstract":"This paper presents a macroscopic mechanistic mathematical modeling and optimization study of a batch polymerization reactor in which self-initiated free-radical polymerization of n-butyl acrylate at 140 and 160°C takes place. The model is obtained using a comprehensive free-radical polymerization reaction mechanism. The rate constant of the monomer self-initiation is estimated from monomer conversion measurements. The model is validated using a different set of conversion measurements. The validation results show that the macroscopic mechanistic model is accurate enough for optimization of the self-initiated polymerization reactor to produce high quality acrylic resins. The model is then used to calculate an optimal batch-reactor temperature profile that yields an end-batch polymer product with desired properties (conversion and number-average molecular weight).","PeriodicalId":225201,"journal":{"name":"Proceedings of the 2011 American Control Conference","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Macroscopic mechanistic modeling and optimization of a self-initiated high-temperature polymerization reactor\",\"authors\":\"Thomas Rier, S. Srinivasan, M. Soroush, G. Kalfas, M. Grady, A. Rappe\",\"doi\":\"10.1109/ACC.2011.5991445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a macroscopic mechanistic mathematical modeling and optimization study of a batch polymerization reactor in which self-initiated free-radical polymerization of n-butyl acrylate at 140 and 160°C takes place. The model is obtained using a comprehensive free-radical polymerization reaction mechanism. The rate constant of the monomer self-initiation is estimated from monomer conversion measurements. The model is validated using a different set of conversion measurements. The validation results show that the macroscopic mechanistic model is accurate enough for optimization of the self-initiated polymerization reactor to produce high quality acrylic resins. The model is then used to calculate an optimal batch-reactor temperature profile that yields an end-batch polymer product with desired properties (conversion and number-average molecular weight).\",\"PeriodicalId\":225201,\"journal\":{\"name\":\"Proceedings of the 2011 American Control Conference\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2011 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2011.5991445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2011 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2011.5991445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Macroscopic mechanistic modeling and optimization of a self-initiated high-temperature polymerization reactor
This paper presents a macroscopic mechanistic mathematical modeling and optimization study of a batch polymerization reactor in which self-initiated free-radical polymerization of n-butyl acrylate at 140 and 160°C takes place. The model is obtained using a comprehensive free-radical polymerization reaction mechanism. The rate constant of the monomer self-initiation is estimated from monomer conversion measurements. The model is validated using a different set of conversion measurements. The validation results show that the macroscopic mechanistic model is accurate enough for optimization of the self-initiated polymerization reactor to produce high quality acrylic resins. The model is then used to calculate an optimal batch-reactor temperature profile that yields an end-batch polymer product with desired properties (conversion and number-average molecular weight).