一种结合一阶逻辑和语义相似度的异构数据匹配算法

Gang Liu, Caixia Lu, Shaobin Huang, Suyan Sun
{"title":"一种结合一阶逻辑和语义相似度的异构数据匹配算法","authors":"Gang Liu, Caixia Lu, Shaobin Huang, Suyan Sun","doi":"10.1109/ICISA.2014.6847329","DOIUrl":null,"url":null,"abstract":"In this paper studies a kind of information matching method based on neural network, and the method combines first-order logic and semantic similarity to complete the table matching, using SOM+ to generate feedback neural network to complete the field matching. The method can effectively reduce the matching time complexity. And by using history match, it effectively reduces the training time of neural network, improving the accuracy of matching.","PeriodicalId":117185,"journal":{"name":"2014 International Conference on Information Science & Applications (ICISA)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Heterogeneous Data Matching Algorithm with Combining First-Order Logic and Semantic Similarity\",\"authors\":\"Gang Liu, Caixia Lu, Shaobin Huang, Suyan Sun\",\"doi\":\"10.1109/ICISA.2014.6847329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper studies a kind of information matching method based on neural network, and the method combines first-order logic and semantic similarity to complete the table matching, using SOM+ to generate feedback neural network to complete the field matching. The method can effectively reduce the matching time complexity. And by using history match, it effectively reduces the training time of neural network, improving the accuracy of matching.\",\"PeriodicalId\":117185,\"journal\":{\"name\":\"2014 International Conference on Information Science & Applications (ICISA)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Information Science & Applications (ICISA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISA.2014.6847329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Information Science & Applications (ICISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISA.2014.6847329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了一种基于神经网络的信息匹配方法,该方法结合一阶逻辑和语义相似度完成表匹配,利用SOM+生成反馈神经网络完成字段匹配。该方法可以有效降低匹配时间复杂度。通过历史匹配,有效地减少了神经网络的训练时间,提高了匹配的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Heterogeneous Data Matching Algorithm with Combining First-Order Logic and Semantic Similarity
In this paper studies a kind of information matching method based on neural network, and the method combines first-order logic and semantic similarity to complete the table matching, using SOM+ to generate feedback neural network to complete the field matching. The method can effectively reduce the matching time complexity. And by using history match, it effectively reduces the training time of neural network, improving the accuracy of matching.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信